Advertisement

Complex eliminations; eliminations with rearrangements

  • Gerd Kaupp
Conference paper
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 146)

Abstract

Complex eliminations proceed with rearrangements. They’occur in most of the different branches of preparative organic chemistry. By relative notations of positions, they are ordered and named in a classifying way, independent from the respective reaction mechanism. Structural peculiarities of particular types are also included and distinguished. If only one or two groups or bonds migrate, the classifications are distinct and unequivocal. Nevertheless, in case of two migrating residues it is occasionally necessary to evaluate by labelling, which type the reaction belongs to. In the case of multiple migrations, it is necessary to divide the reaction into partial steps via (several) postulated or proved intermediates. The presented material shows synthetical potential and points out that most types can be realized according to different reaction mechanisms and under most different reaction conditions.

Keywords

Assistant Figure Leaving Group Elimination Type Benzilic Acid Tetrahydrofurfuryl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. 2.
    See e.g. Becker, K. B., Labhart, M. P.: Helv. Chim. Acta 66, 1090 (1983); Nakayama, J., Ohshima, E., Ishii, A., Hoshino, M.: J. Org. Chem. 48, 60 (1983); Org. Reactions 25, 1 (1977)Google Scholar
  2. 3.
    Alkhader, M. A., Smalley, R. K.: J. Chem. Res. (S) 1982, 295; J. Chem. Res. (M) 1982, 3283Google Scholar
  3. 4.
    Komppa, G., Nyman, G. A.: Ber. Dtsch. Chem. Ges. 69, 334 (1936)Google Scholar
  4. 5.
    Gukasyan, A. O., Shakhnazaryan, G. M.: Arm. Khim. Zh. 36, 374 (1983), C.A. 99, 157907 (1983)Google Scholar
  5. 6.
    Jain, A. C., Rohatgi, V. K., Seshadri, T. R.: Tetrahedron 23, 2499 (1967)Google Scholar
  6. 7.
    Kugita, H., Inoue, H., Ikezaki, M., Takeo, S.: Chem. Pharm. Bull. (Tokyo) 18, 2028 (1970)Google Scholar
  7. 8.
    Berti, C.: Gazz. Chim. Ital. 90, 559 (1960); photochemical example with acyl migration: Tortajada, J., van Hemelrych, B., Morizur, J. P.: Tetrahedron 40, 613 (1984)Google Scholar
  8. 9.
    Starting points are cyclohexenes, α-chloronitrones, and KCN: DasGupta, T. K., Felix, D., Kempe, U. M., Eschenmoser, A.: Helv. Chim. Acta 55, 2198 (1972)Google Scholar
  9. 10.
    Vystrěil, A., Křeček, V., Buděšinsk\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y}\), M.: Coll. Czech. Chem. Commun. 48, 1499 (1983)Google Scholar
  10. 11.
    Pirrung, M. C., Hwu, J. R.: Tetrahedron Lett. 24, 565 (1983)Google Scholar
  11. 12.
    Fitjer, L., Modaressi, S.: Tetrahedron Lett. 24, 5495 (1983); also 1,1-diaryl-and 1,1-dicyclopropyl-2-haloethenes react with bases to give acetylenes in terms of [1,2,1]-eliminations: Köbrich, G., Merkel, D.: Angew. Chem. 82, 257 (1970); Angew. Chem. Int. Ed. Engl. 9, 243 (1970); mechanistic discussion: Köbrich, G.: ibid. 77, 75 (1965) and 4, 49 (1965)Google Scholar
  12. 13.
    Merz, A., Thumm, G.: Liebigs Ann. Chem. 1978, 1526Google Scholar
  13. 14.
    Review: Murray, M.: Methoden der Organischen Chemie, Houben-Weyl-Müller, Vol. 5/2a, p. 985, Thieme Verlag, Stuttgart, 1977Google Scholar
  14. 15. a.
    Marquis, E. T., Gardner, P. D.: Tetrahedron Lett. 1966, 2793Google Scholar
  15. 15. b.
    optical active 1,2-cyclononadiene: Moore, W. R., Bach, R. D.: J. Am. Chem. Soc. 94, 3148 (1972)Google Scholar
  16. 16.
    Blickle, P., Hopf, H.: Tetrahedron Lett. 1978, 449; cf. Kleveland, K., Skattebøl, L.: J. Chem. Soc. Chem. Commun. 1973, 432Google Scholar
  17. 17.
    Jefford, C. W., Rossier, J. C., Zuber, J. A., Kennard, O., Cruse, W. B. T.: Tetrahedron Lett. 24, 181 (1983); additional reactions of 1,1-dibromocyclobutenes: Brinker, U. H., Schenker, G.: J. Chem. Soc. Chem. Commun. 1982, 679Google Scholar
  18. 18.
    Jones, W. M., Grasley, M. H.: Tetrahedron Lett. 1962, 927; cf. the synthesis of highly reactive ketene imines from α-diazoamino compounds: Arnold, B., Regitz, M.: Angew. Chem. 91, 337 (1979); Angew. Chem. Int. Ed. Engl. 18, 320 (1979)Google Scholar
  19. 19.
    Tomioka, H., Hayashi, N., Izawa, Y., Senthilnathan, V. P., Platz, M. S.: J. Am. Chem. Soc. 105, 5053 (1983) and lit. cit. therein; cyclohepta-1,2,4,6-tetraene from phenylcarbene: West, P. R., Chapman, O. L., LeRoux, J.-P.: ibid. 104, 1779 (1982); 1-azacyclohepta-1,2,4,6-tetraene from phenylazide: Takenchi, H., Koyama, K.: J. Chem. Soc. Perkin I 1982, 1269Google Scholar
  20. 20.
    Review: Dürr, H.: Methoden der Organischen Chemie, Houben-Weyl-Müller, vol. IV/5b, p. 1158ff., Thieme Verlag, Stuttgart, 1975; diaziridines react correspondingly (Δ and hv), e.g. with migration of hydrogen: Liu, M. T. H., Chishti, N. T., Tencer, M., Tomioka, H., Izawa, Y.: Tetrahedron 40, 887 (1984); in monolayers: Holden, D. A., Ringsdorf, H., Haubs, M.: J. Am. Chem. Soc. 106, 4531 (1984)Google Scholar
  21. 21.
    Masamune, S., Nakamura, N., Suda, M., Ona, H.: J. Am. Chem. Soc. 95, 8481 (1973)Google Scholar
  22. 22.
    Eisenbarth, P., Regitz, M.: Chem. Ber. 115, 3796 (1982); Angew. Chem. 94, 935 (1982); Angew. Chem. Int. Ed. Engl. 21, 913 (1982); Angew. Chem. Suppl. 1982, 2016Google Scholar
  23. 23.
    Wolff, L.: Liebigs Ann. Chem. 325, 129 (1902); 394, 25 (1912)Google Scholar
  24. 24.
    Blaustein, M. A., Berson, J. A.: Tetrahedron Lett. 1981, 1081Google Scholar
  25. 25.
    Dauben, W. G., Walker, D. M.: Tetrahedron Lett. 23, 711 (1982); related example: Wiberg, K. B., Olli, L. K., Golembeski, N., Adams, R. D.: J. Am. Chem. Soc. 102, 7467 (1980); paddlanes: Eaton, P. E., Leipzig, B. D.: ibid. 105, 1656 (1983)Google Scholar
  26. 26.
    Stork, G., Szajewski, R. P.: J. Am. Chem. Soc. 96, 5787 (1974)Google Scholar
  27. 27.
    Süs, O.: Liebigs Ann. Chem. 556, 85 (1944); Pape, M.: Pure Appl. Chem. 41, 535 (1975)Google Scholar
  28. 28.
    Linke, S., Tisue, G. T., Lwowski, W.: J. Am. Chem. Soc. 89, 6308 (1967); Eibler, E., Sauer, J.: Tetrahedron Lett. 1974, 2569 and lit. cit. therein; correspondingly 3-azidonoradamantane: Radziszewski, J. G., Downing, J. W., Wentrup, C., Kaszynski, P., Jawdosiuk, M., Kovacic, P., Michl, J.: J. Am. Chem. Soc. 106, 7996 (1984); Sasaki, T., Equchi, S., Okano, T.: Tetrahedron Lett. 23, 4969 (1982); 1-azidobicyclo[3.2.1]octane: Becker, K. H., Gabutti, C. A.: ibid. 23, 1883 (1982); tris-dimethylaminoazidophosphonium salts reacting to give iminophosphonium salts: Mulliez, M., Majoral, J. P., Bertrand, G.: J. Chem. Soc. Chem. Commun. 1984, 284; diphenylphosphinic acid azide: Harger, M. J. P., Westlake, S.: J. Chem. Soc. Perkin I 1984, 2351Google Scholar
  29. 29.
    Jones, W. M., Brinker, U. H.: Pericyclic Reactions, chap. 3, p. 109 ff., Academic Press, New York, 1977Google Scholar
  30. 30.
    Review: Prinzbach, H., Auge, W.: Methoden der Organischen Chemie, Houben-Weyl-Müller, vol. V/1b (1972), p. 686ff.; syntheses of cyclobutenes: Seebach, D.: ibid., vol. IV/4, p. 112ff., 1971; photochemical syntheses of cyclopropanes: Brinker, U. H., König, L.: Chem. Ber. 116, 882 (1983)Google Scholar
  31. 31.
    Review: Adlington, R. M., Barrett, A. G. M.: Acc. Chem. Res. 1983, 55; Shapiro, R. H.: Org. React. 23, 405 (1975)Google Scholar
  32. 32.
    Kirmse, W., Spaleck, W.: Angew. Chem. 93, 791 (1981); Angew. Chem. Int. Ed. Engl. 20, 776 (1981)Google Scholar
  33. 33.
    El'Cov, A. V., Krivzejko, K. M.: Žh. Org. Chim. 6, 635 (1970); Cheminform 26, 158 (1970)Google Scholar
  34. 34.
    Trost, B. M.: J. Am. Chem. Soc. 89, 138 (1967)Google Scholar
  35. 35.
    Bestmann, H. J., Pfohl, S.: Liebigs Ann. Chem. 1974, 1688; Bestmann, H. J., Häberlein, H., Pils, I.: Tetrahedron 20, 2079 (1974)Google Scholar
  36. 36. a)
    Autorenkollektiv: Organicum, 15th edit., VEB Deutscher Verlag der Wissenschaften, Berlin 1981.Google Scholar
  37. 36. b)
    Isocyanates from pyridinium 1-acylimines: Katritzky, A. R., Lewis, J., Nie, P.-L.: J. Chem. Soc. Perkin I 1979, 447Google Scholar
  38. 37.
    Organic Synthesis, Coll. Vol. III, 276 (1955)Google Scholar
  39. 38.
    Brown R. F. C., Eastwood, F. W., Lim, S. T., McMullen, G. L.: Aust. J. Chem. 29, 1705 (1976)Google Scholar
  40. 39.
    Oele, P. C., Louw, R.: Tetrahedron Lett. 1972, 4941.Google Scholar
  41. 40.
    Kwart, H., Hoster, D. P.: Chem. Commun. 1967, 1155Google Scholar
  42. 41.
    Morton, Th.: Tetrahedron 38, 3195 (1982)Google Scholar
  43. 42.
    Also [1,2,3]-elimination (cf. Section 3.3): Failes, R. L., Mollah, Y. M. A., Shapiro, J. S.: Int. J. Chem. Kinet. 11, 1271 (1979); 13, 7 (1981); neopentyl phenylether behaves similarly upon electron bombardment 41) Google Scholar
  44. 43.
    Pozharskii, A. F., Kuz'menko, V. V., Nanavyan, I. M.: Khim. Geterotsikl. Soedin. 11, 1564 (1983); C.A. 100, 85661x (1984); N-aminooxindole: Atkinson, R. S., Rees, C. W., J. Chem. Soc. C 1969, 772Google Scholar
  45. 44.
    Itoh, H.: Noguchi Kenkyusho Jiho 25, 44 (1982); C.A. 98, 126529w (1983)Google Scholar
  46. 45.
    Also [1,2,1]-elimination: Brown, D. W., Hendrick, M. E., Jones Jr., M.: Tetrahedron Lett. 1973, 3951; [1,5,1]-elimination of 8,8-dibromobicyclo[5.1.0]octane: lit. 159); methylbicyclobutanes (e.g. from 1,1-dibromotetramethylcyclopropane) may rearrange subsequently [methyl-1-(2-propenyl-)cyclopropane]: Skattebøl, L.: Acta Chem. Scand. 17, 1683 (1963)Google Scholar
  47. 46.
    Closs, G. L., Closs, L. E.: J. Am. Chem. Soc. 85, 99 (1963)Google Scholar
  48. 47. a)
    Kirmse, W., v. Scholz, H. D., Arold, H.: Liebigs Ann. Chem. 711, 22 (1968, lit. cit. therein; review in lit. 20))Google Scholar
  49. 47. b)
    more recent examples: Erni, B., Khovana, H. G.: J. Am. Chem. Soc. 102, 3888 (1980)Google Scholar
  50. 47. c)
    Gano, J. E., Wettach, R. H., Platz, M. S., Senthilnathan, V. P.: ibid. 104, 2326 (1982)Google Scholar
  51. 48.
    Rando, R. R.: J. Am. Chem. Soc. 94, 1629 (1972); Tomioka, H., Kondo, M., Izawa, Y.: J. Org. Chem. 46, 1090 (1981); corresponding synthesis of penicillanic acid: Corey, E. J., Felix, A. M.: J. Am. Chem. Soc. 87, 2518 (1965)Google Scholar
  52. 49.
    Bear, T. A., Gutsche, C. D.: J. Am. Chem. Soc. 93, 5180 (1971); there detailed mechanistic discussion; for a further example of a [1,5,1]-elimination: Platz, M.S., Carroll, G., Pierrat, F., Zayas, J., Auster, S.: Tetrahedron 38, 777 (1982); [1,6,1]-elimination: Banerjee, A. K., Caraballo, P. C., Hurtado, H. S., Carrasco, M. C., Rivas, C.: Tetrahedron 37, 2749 (1981); superphanes by [1,8,1]-elimination: Schirch, P. F. T., Boekelheide, V.: J. Am. Chem. Soc. 103, 6873 (1981)Google Scholar
  53. 50.
    Swenton, J. S., Ikeler, T. J., Williams, B. H.: J. Am. Chem. Soc. 92, 3103 (1970), lit. cit. therein: analogously fluorenes from 2-biphenyldiazomethanes: Denny, D.B., Klemchuk, P. P.: ibid. 80, 3289 (1958)Google Scholar
  54. 51. a)
    Kirmse, W., Arend, G.: Chem. Ber. 105, 2738 (1972), lit. cit. thereinGoogle Scholar
  55. 51. b)
    Review of further three-membered ring syntheses: Wendisch, D.: Methoden der Organischen Chemie, Houben-Weyl-Müller, vol. IV/3, p. 333ff. ([1,3,1]-e.); p. 697ff. ([1,(2)3,1]-e.), Thieme Verlag, Stuttgart, 1971Google Scholar
  56. 51. c)
    [1,5,1]-and [1,6,1]-e. with tosylhydrazones: Cope, A. C., Martin, M. M., McKervey, M. A.: Quart. Rev. 20, 119 (1966)Google Scholar
  57. 52.
    Thermally 82 (Li-salt) does not produce tricyclene (83), but via a [1,2,1]-e. bornylene (2-bornene) instead: Shapiro, R. H., Heath, M. J.: J. Am. Chem. Soc. 89, 5734 (1967)Google Scholar
  58. 53.
    Lemal, D. M., Shim, K. S.: Tetrahedron Lett. 1964, 3231; tricyclo[2.1.0.02,5]pentane-3-one by [1,4,(5)1]-e.: Maier, G., Hoppe, M., Reisenauer, H. P.: Angew. Chem. 95, 1009 (1983); Angew. Chem. Int. Ed. Engl. 22, 990 (1983), lit. cit. therein; cyclopropene formation via photolysis of conjugated tosylhydrazonates: Klett, M. W., Johnson, R. P.: Tetrahedron Lett. 24, 2523 (1983); Farnum, D. G., Ghandi, M., Raghu, S., Reitz, T.: J. Org. Chem. 47, 2598 (1982)Google Scholar
  59. 54.
    Hortmann, A. G., Martinelli, J. E.: Tetrahedron Lett. 1968, 6205Google Scholar
  60. 55.
    Brown, I., Edwards, O. E., McIntosh, J. M., Vocelle, D.: Can. J. Chem. 47, 2751 (1969); [1,6,(5)1]-e. of acyclic halogenides: Garst, J. F., Hines, J. B.: J. Am. Chem. Soc. 106, 6443 (1984)Google Scholar
  61. 56.
    Jorgenson, M. J.: J. Am. Chem. Soc. 91, 6432 (1966); applications in the synthesis of natural products: Balmain, A.: J. Chem. Soc. Perkin II 1975, 1253; more recent example (azide): Montevecchi, P. C., Spagnolo, P.: J. Org. Chem. 47, 1996 (1982)Google Scholar
  62. 57.
    Dieterich, D.: Methoden der Organischen Chemie, Houben-Weyl-Müller, vol. VII/2a, p. 927ff.; 1016ff., Thieme Verlag, Stuttgart, 1973Google Scholar
  63. 58.
    More recent examples: Della, E. W., Pigou, P. E.: Austr. J. Chem. 36, 2261 (1983); ring contraction: Ebsiu, K., Batty, L. B., Higaki, J. M., Larson, H. O.: J. Am. Chem. Soc. 88, 1995 (1966); phenyl migration with partial racemization: Martin, J. C., Bentrude, W. G.: J. Org. Chem. 24, 1902 (1959)Google Scholar
  64. 59.
    Eistert, B., Regitz, M.: Methoden der Organischen Chemie, Houben-Weyl-Müller, vol. VII/2b, p. 1852ff.; 1855ff., Thieme Verlag, Stuttgart, 1976; cyclobutanones; Turro, N. J., Gagosian, R.B.: J. Am. Chem. Soc. 92, 2036 (1970)Google Scholar
  65. 60.
    Cohen, T., Kuhn, D., Falck, J. R.: J. Am. Chem. Soc. 97, 4749 (1975); Knapp, S., Trope, A. F., Theodore, M. S., Hirata, N., Barchi, J. J.: J. Org. Chem. 49, 608 (1984)Google Scholar
  66. 61.
    Suzuki, K., Katayama, E., Tsuchihashi, G.: Tetrahedron Lett. 24, 4997 (1983)Google Scholar
  67. 62.
    Ghera, E.: Tetrahedron Lett. 1965, 4181Google Scholar
  68. 63.
    Suginome, H., Liu, C. F., Tokuda, M.: J. Chem. Soc. Chem. Commun. 1984, 334Google Scholar
  69. 64.
    Clark-Lewis, J. W., Edgar, J. A.: J. Chem. Soc. 1962, 3887; Wöhler, F., Liebig, J.: Liebigs. Ann. Chem. 26, 241 (1838)Google Scholar
  70. 65.
    Büchi, G., MacLeod, W. D., Padilla, J.: J. Am. Chem. Soc. 86, 4438 (1964); Dobler, M., Dunitz, J. D., Gubler, B., Weber, H. P.: Proc. Chem. Soc. 1963, 383; more recent [1,2,3]-eliminations of acetates with H-migration: Chuchani, G., Rotinov, R., Dominguez, R. M., Gonzales, N.: J. Org. Chem. 49, 4157 (1984)Google Scholar
  71. 66.
    Also tricyclene (83) by [1,3,1]-e. (21.5%) and bornylene by [1,2]-e. (24.5%); similar behaviour of bornylisobenzoate and bornylmethylxanthate: Bunton, C. A., Khaleeluddin, K., Whittaker, D.: Nature 190, 715 (1961).Google Scholar
  72. 67.
    Johnston, J. P., Overton, K. H.: J.C.S. Perkin Trans. I 1972, 1490Google Scholar
  73. 68.
    Boyd, J., Overton, K. H.: J.C.S. Perkin Trans. I 1972, 2533; photolysis of 2-iodoadamantane to give 114: Kropp, P. J., Sawyer, J. A., Snyder, J. J.: J. Org. Chem. 49, 1583 (1984); corresponding reactions of vinyltriflates to give butadienes: Martinez, A. G., Hanack, M., Summerville, R. H., von R. Schleyer, P., Stang, P. J.: Angew. Chem. 82, 323 (1970); Angew. Chem. Int. Ed. Engl. 9, 302 (1970); Pfeifer, W. D., Bahn, C. A., von R. Schleyer, P., Bocher, S., Harding, C. E., Hummel, K., Hanack, M., Stang, P. J.: J. Am. Chem. Soc. 93, 1513 (1971); [1,2,3]-e. of quarternary ammonium hydroxides: Cocker, W., Geraghty, N. W. A., McMurry, T. B. H., Shannon, P. V. R.: J. Chem. Soc. Perkin I 1984, 2245Google Scholar
  74. 69.
    DeBoer, C. D.: Chem. Commun. 1972, 377Google Scholar
  75. 70.
    Mamer, O. A., Rutherford, R. G., Seidewand, R. J.: Can. J. Chem. 52, 1983 (1974); naphthalene series: Grützmacher, H. F., Hübner, J.: Liebigs Ann. Chem. 1973, 793; cyclopentadienothioketene and-selenoketene via [1,2,3]-e. of N2 from 1,2,3-benzothio(seleno-)diazole: Schulz, R., Schweig, A.: Tetrahedron Lett., 25, 2337 (1984)Google Scholar
  76. 71.
    Moss, G. I., Crank, G., Eastwood, F. W.: J. Chem. Soc. Chem. Commun. 1970, 206Google Scholar
  77. 72.
    Marshall, J. A., Roebke, H.: J. Org. Chem. 34, 4188 (1969); cf. Coffeu, D. L., Lee, M. L.: ibid. 35, 2077 (1970)Google Scholar
  78. 73.
    Scibner, R. M.: Tetrahedron Lett. 1967, 4737; photochemical example with succeeding hydrogen migration: Hirakawa, K., Tanabiki, T.: J. Org. Chem. 47, 280 (1982); more recent thermal reaction: Kato, N., Hamada, Y., Shioiri, T.: Chem. Pharm. Bull. 32, 2496 (1984)Google Scholar
  79. 74.
    Parham, W. E., Braxton, H. G., O'Connor, P. R.: J. Org. Chem. 26, 1805 (1961)Google Scholar
  80. 75.
    Wassermann, H. H., Adickes, H. W., deOchoa, O. E.: J. Am. Chem. Soc. 93, 5586 (1971)Google Scholar
  81. 76.
    Corey, E. J., Bauld, N. L., LaLonde, R. T., Casanova, J., Kaiser, E. T.: J. Am. Chem. Soc. 82, 2645 (1960)Google Scholar
  82. 77.
    Weyerstall, P., Klamann, D., Finger, C., Fligge, M., Nerdel, F., Buddrus, J.: Chem. Ber. 101, 1303 (1968); in-situ production of 132: Engelsma, J. W.: Rec. Trav. Chim. Pays-Bas 84, 187 (1965).Google Scholar
  83. 78.
    Further examples: Barlet, R., Vo-Quang, Y.: Bull. Soc. Chim. France 1969, 3729; sulfonyl groups: Griffiths, G., Hughes, S., Stirling, C. J. M.: J. Chem. Soc. Chem. Commun. 1982, 236; 658Google Scholar
  84. 79.
    Ciamician, G., Dennstedt, M.: Ber. Dtsch. Chem. Ges. 14, 1153 (1881); pyrimidines via oxidation of 1,3-diazabicyclo[3.1.0]hexenes: Heine, H. W., Weese, R. H., Cooper, R. A., Durbetaki, A. J.: J. Org. Chem. 32, 2708 (1967)Google Scholar
  85. 80.
    Parham, W. E., Schweizer, E. E.: Org. Reactions 13, 55 (1963)Google Scholar
  86. 81.
    Parham, W. E., Twelves, R. R.: J. Org. Chem. 22, 730 (1957); analogously 2-chloropyrazine and 5-chloropyrimidine: Busby, R. E., Iqbal, M., Parrick, J., Shaw, C. J. G.: J. Chem. Soc. Chem. Commun. 1969, 1344; 3-bromocycloheptatriene: Ketley, A. D., Berlin A. J., Gorman, E., Fischer, L. P.: J. Org. Chem. 31, 305 (1966); 2-chloro-3-ethoxy-(Z-)1,(E-)3-cyclotridecadiene: Parham, W. E., Sperley, R. J.: ibid. 32, 927 (1967); with hydrogen migration: Davalian, D., Garratt, P. J.: Tetrahedron Lett. 1976, 2815Google Scholar
  87. 82.
    Birch, A. J., Brown, J. M., Stansfield, F.: J. Chem. Soc. 1964, 5343Google Scholar
  88. 83.
    Parham, W. E., Bolon, D. A., Schweizer, E. E.: J. Am. Chem. Soc. 83, 603 (1961)Google Scholar
  89. 84.
    Anderson, M., Johnson, A. W.: J. Chem. Soc. 1965, 2411Google Scholar
  90. 85.
    Schubert, W. M., Leahy, S. M.: J. Am. Chem. Soc. 79, 381 (1957)Google Scholar
  91. 86.
    Fischer, H. O. L., Feldmann, L.: Ber. Dtsch. Chem. Ges. 62, 854 (1929), Fischer, H. O. L., Taube, C.: ibid. 57, 1502 (1924); Dakin, H. D., Dudley, H. W.: J. Biol. Chem. 15, 127 (1913)Google Scholar
  92. 87.
    Reich, H., Samuels, B. K.: J. Org. Chem. 21, 68 (1956)Google Scholar
  93. 88. a)
    Saavedra, J. E.: J. Org. Chem. 46, 2610 (1981); additionally [1,2,(3)4]-elimination (cf. Section 3.5); N-migration has been realized in the [1,2,4]-elimination of methanol in lit. 88b) (there from 5 to give 4)Google Scholar
  94. 88. b)
    Kaupp, G., Hunkler, D., Zimmermann, I.: Chem. Ber. 115, 2467 (1982)Google Scholar
  95. 89.
    Cope, A. C., Moon, S., Park, C. H.: J. Am. Chem. Soc. 84, 4850 (1962); additionally [1,1,3]-and [1,1,(2)4]-substitutionsGoogle Scholar
  96. 90.
    Bartnik, R., Laurent, A., Lesniak, S.: Compt.rend. C 288, 505 (1979)Google Scholar
  97. 91.
    Abdun-Nur, A. R., Bordwell, F. G.: J. Am. Chem. Soc. 86, 5695 (1964)Google Scholar
  98. 92.
    Biermann, H. W., Freemann, W. P., Morton, T. H.: J. Am. Chem. Soc. 104, 2307 (1982)Google Scholar
  99. 93.
    Allinger, N. L., Greenberg, S.: J. Am. Chem. Soc. 84, 2394 (1962)Google Scholar
  100. 94.
    Ourisson, G.: Proc. Chem. Soc. 1964, 274Google Scholar
  101. 95.
    Heck, R., Prelog, V.: Helv. Chim. Acta 38, 184 (1955); Urech, H. J., Prelog, V.: ibid. 40, 477 (1957); Prelog, V., Küng, W., Tomljenović, T.: ibid. 45, 1352 (1962); related examples with 9-, 10-and 11-membered rings: Prelog, V., Kägi, H. H., White, E. H.: ibid. 45, 1658 (1962); King, J. F., de Mayo, P. in “Molecular Rearrangements”, vol. 2, p. 771ff., Interscience Publishers, New York, 1963; lit. 51c)Google Scholar
  102. 96.
    Prelog, V., Küng, W.: Helv. Chim. Acta 39, 1395 (1956)Google Scholar
  103. 97.
    Cope, A. C., Peterson, P. E.: J. Am. Chem. Soc. 81, 1643 (1959); additionally [1,2,6]-substitutions to give exo-and endo-2-acetoxybicyclo[3.3.0]octane; open-chain examples: Lochead, A. W., Proctor, C. R., Caton, M. P. L.: J. Chem. Soc. Perkin I 1984, 2477Google Scholar
  104. 98.
    Cope, A. C., Nealy, D. L., Scheiner, P., Wood, G.: J. Am. Chem. Soc. 87, 3130 (1965); yield in 156: 14%; main reaction in acetolysis is the [1,2,7]-substitution to give 2-acetoxybicyclo[3.3.1]nonane; cf. Hanack, M., Kaiser, W.: Angew. Chem. 76, 572 (1964); Angew. Chem. Int. Ed. Engl. 3, 583 (1964)Google Scholar
  105. 99.
    Hanack, M., Schneider, H.-J., Schneider-Bernlöhr, H.: Tetrahedron 23, 2195 (1967)Google Scholar
  106. 100.
    Jones, R. L., Rees, C. W.: J. Chem. Soc. C 1969, 2255Google Scholar
  107. 101.
    Gill, G. B., Harper, D. J., Johnson, A. W.: J. Chem. Soc. C 1968, 1675Google Scholar
  108. 102.
    Schnieders, C., Altenbach, H. J., Müllen, K.: Angew. Chem. 94, 638 (1982); Angew. Chem. Int. Ed. Engl. 21, 637 (1982); Angew. Chem. Suppl. 1982, 1353Google Scholar
  109. 103.
    van Bergen, T. J., Kellogg, R. M.: J. Org. Chem. 36, 978 (1971)Google Scholar
  110. 104.
    Culvenor, C. C., Davies, W., Savige, W. E.: J. Chem. Soc. 1952, 4480 and lit. cit. therein; if the N-H(O-H)bonds in 185 (187) do not in fact participate, these would be simple [1,3]-eliminations; cf. Calo, V., Lopez, L., Marchese, L., Pesce, G.: J. Chem. Soc. Chem. Commun. 1975, 621; [1,2,5(4)]-and [1,2,7(6)]-elimination of water from 2-and 4-hydroxymethylpyridine N-oxide: Chilton, W. S., Butler, A. K.: J. Org. Chem. 32, 1270 (1967); related [1,2,6(5)]-eliminations: Haddadin, M. J., Issidorides, C. H.: Tetrahedron Lett. 1968, 4609; Kaupp, G., Voss, H.: to be publishedGoogle Scholar
  111. 105.
    Kaupp, G.: Chem. Ber. 118, 4271 (1985)Google Scholar
  112. 106.
    Trahanovsky, W. S., Alexander, D. L.: J. Am. Chem. Soc. 101, 142 (1979) and lit. cit. therein; deuterium which may be introduced in relative position 4 is not lost during the reactionGoogle Scholar
  113. 107.
    Wharton, P. S., Hiegel, G. A., Coombs, R. V.: J. Org. Chem. 28, 3217 (1963)Google Scholar
  114. 108.
    Review of literature: Heinrich, P., Methoden der Organischen Chemie, Houben-Weyl-Müller, vol. IV/5b, p. 891ff., Thieme Verlag, Stuttgart, 1975; “McLafferty-rearrangement” of ketones and numerous further classes of compounds: see e.g. Rose, M. E., Johnstone, R. A. W.: Mass spectrometry for chemists and biochemists, Cambridge University Press, Cambridge, p. 222ff. (1982)Google Scholar
  115. 109.
    Cooke, R. S., Lyon, G. D.: J. Am. Chem. Soc. 93, 3840 (1971); here also decarbonylations of five-membered ring anhydrides, like e.g. phthalic acid anhydride (further products: CO2 and dehydrobenzene) should be mentioned: Dunkin, I. R., MacDonald, J. G.: Tetrahedron Lett. 23, 4839 (1982) and lit. cit. thereinGoogle Scholar
  116. 110.
    Hünig, S., Ort, B.: Angew. Chem. 96, 231 (1984); Angew. Chem. Int. Ed. Engl. 23, 237 (1984)Google Scholar
  117. 111.
    See e.g. Adam, W., Cadiz, C., Mazenod, F.: Tetrahedron Lett. 1981, 1203 and lit. cit. thereinGoogle Scholar
  118. 112.
    This type should be distinguished from simple [1,4]-eliminations which provide cyclobutanesGoogle Scholar
  119. 113.
    TerBorg, A. P., Bickel, A. F.: Rec. trav. chim. PaysBas 80, 1217 (1961); 2-chloro-2,3-epoxy-norbornane→nortricyclanone (via α-oxocarbene by [1,1,2]-elimination?): MacDonald, R.N., Steppel, R. N., Cousins, R. C.: J. Org. Chem. 40, 1694 (1975)Google Scholar
  120. 114.
    Nerdel, F., Frank, D., Marschall, H.: Chem. Ber. 100, 720 (1967); further example: Nerdel, F., Frank, D., Rehse, K.: ibid. 100, 2978 (1967)Google Scholar
  121. 115.
    Nishiyama, H., Kitajima, T., Yamamoto, A., Itoh, K.: J. Chem. Soc. Chem. Commun. 1982, 1232Google Scholar
  122. 116.
    de Groot, A., Boerma, J. A., Wynberg, H.: Tetrahedron Lett. 1968, 2365Google Scholar
  123. 117.
    Casey, M., Moody, C. J., Rees, C. W.: J. Chem. Soc. Chem. Commun. 1982, 714Google Scholar
  124. 118.
    Sato, E., Kanaoka, Y., Padwa, A.: J. Org. Chem. 47, 4256 (1982)Google Scholar
  125. 119.
    Kaupp, G.: Chem. Ber. 117, 1643 (1984)Google Scholar
  126. 120.
    Kaupp, G., Gründken, E., Matthies, D.: Chem. Ber. 119, 3109 (1986)Google Scholar
  127. 121.
    Wilhelm, M., Schmidt, P.: Helv. Chim. Acta 53, 1697 (1970)Google Scholar
  128. 122.
    Kryczka, B., Laurent, A., Marquet, B.: Tetrahedron 34, 3291 (1978)Google Scholar
  129. 123.
    Kwart, H., Slutsky, J.: J. Org. Chem. 41, 1429 (1976); Adams, B. L., Kovacic, P.: J. Am. Chem. Soc. 97, 2829 (1975)Google Scholar
  130. 124.
    Adam, W., DeLucchi, O., Hill, K.: J. Am. Chem. Soc. 104, 2934 (1982)Google Scholar
  131. 125.
    Starr, J. E., Eastmann, R. H.: J. Org. Chem. 31, 1393 (1966)Google Scholar
  132. 126.
    Cf. say N-pyrrolidyl-and N-piperidylnitrene: Schultz, P. G., Dervan, P. D.: J. Am. Chem. Soc. 104, 6660 (1982)Google Scholar
  133. 127.
    Cf. e.g. eliminations of sulfur from unstable intermediates which are represented as [5,1,8]-and [6,1,9]-eliminations, resp.: Brown, J. P.: J. Chem. Soc. Perkin I 1974, 869; [2,1,5]-, [6,(2)1,9]-, and [7,(2)1,10]-e. of carbon dioxide: Hodgetts, I., Noyce, S. J., Storr, R. C.: Tetrahedron Lett. 25, 5435 (1984)Google Scholar
  134. 128.
    Volhard, J.: Liebigs Ann. Chem. 253, 206 (1889); Kartritzky, A. R., Robinson, R.: J. Chem. Soc. 1955, 2481; tricyclic dilactone: Sladkov, V. I., Anisimova, O. S., Turchin, K. F., Sheinker, Y. N., Suvorov, N. N.: Zh. Org. Khim. 12, 52 (1976); C.A. 84, 121229z (1976); homologous [1,6,(7)10′]-elim.: Hoye, T. R., Peck, D. R., Trumper, P. K.: J. Am. Chem. Soc. 103, 5618 (1981); correspondingly spiroketals by oxidative cyclodehydration: Burgstahler, A. W., Widiger, G. N.: J. Org. Chem. 38, 3652 (1973)Google Scholar
  135. 129.
    Childs, R. F., Johnson, A. W.: J. Chem. Soc. C 1966, 1950Google Scholar
  136. 130.
    Huisgen, R., Seidl, G.: Tetrahedron 20, 231 (1964); in which there is a proposal of a mechanism via benzocyclonones, which after independent synthesis [Marshall, P. A., Prager, R. H.: Austr. J. Chem. 32, 1251 (1979)] reacted to give 241; [1,3,(2)3′]-elimination of nitrogen from 4-methylene pyrazolines: Dolbier, W. R., Burkholder, C. R.: J. Am. Chem. Soc. 106, 2139 (1984)Google Scholar
  137. 131.
    Yvernault, T., Mazet, M.: Bull. Soc. Chim. France 1969, 638; further examples: Mazet, M.: ibid. 1969, 4309 and lit. cit. thereinGoogle Scholar
  138. 132.
    Folz, C. M., Kondo, Y.: Tetrahedron Lett. 1970, 3163Google Scholar
  139. 133.
    Additional [1,2]-, [1,3]-, [1,2,3]-, [1,2,1]-eliminations: Pillai, C. N., Pines, H.: J. Am. Chem. Soc. 83, 3274 (1961); correspondingly 1-methylcyclopentene from bromocyclohexene by “electron bombardment” in the presence of triethylamine41) Google Scholar
  140. 134.
    Boll. W. J., Landor, S. R.: Proc. Chem. Soc. 1961, 143Google Scholar
  141. 135.
    Paquette, L. A., Meehan, G. V.: J. Am. Chem. Soc. 92, 3039; further examples in lit.30) Google Scholar
  142. 136.
    Kirmse, W., IUPAC, Chemistry for the Future, Pergamon Press, Oxford, 1984, p. 225; a mechanism via vinylcyclopropylcarbene → cyclopentenylcarbene is proposed (“Skattebol-rearrangement”). Then, however, there is a migration of three bonds, not of two (see Sect. 5), and the reaction of 259 should then (with changed topology) be classified as a [1,5,(4)3,2,1]-elimination A series of substituted 1,1-dibromo-2-vinylcyclopropanes undoubtedly react in accordance with the more complicated topology, as is shown by the analysis of the products: e.g. Holm, K. H., Skattebøl, L.: Acta Chem. Scand. B 38, 783 (1984) and lit. cit. thereinGoogle Scholar
  143. 137.
    Cope, A. C., Burton, P. E., Caspar, M. L.: J. Am. Chem. Soc. 84, 4855 (1962)Google Scholar
  144. 138.
    London, J. D., Young, L. B.: J. Chem. Soc. 1963, 5496Google Scholar
  145. 139.
    Adam, W., Gillaspey, W. D.: Tetrahedron Lett. 24, 1699 (1983)Google Scholar
  146. 140.
    Biethan, U., Klusacek, H., Musso, H.: Angew. Chem. 79, 152 (1967); Angew. Chem. Int. Ed. Engl. 6, 176 (1967)Google Scholar
  147. 141.
    Hedaya, E., Kent, M. E., McNeil, D. W., Lossing, F. P., McAllister, T.: Tetrahedron Lett. 1968, 3415; [1,2,3,(2)1]-e. of N2 from 2-fluorenyltetrazole followed by [1,6,Δ,2,1]-e. of N2 and [1,2/2,1]-rearrangement to give benz[a]azulene: Wentrup, C., Becker, J.: J. Am. Chem. Soc. 106, 3705 (1984); analogously 1-azaazulene (followed by [1,7,Δ,3,(2)1]-e. and [1,2/2,1]-r.)Google Scholar
  148. 142.
    Reese, C. B., Sanders, H. P.: Synthesis 1981, 276 and lit. cit. therein; further examples with cyclopropane instead of the oxirane ring: Cristol, S. J., Harrington, J. K.: J. Org. Chem. 28, 1413 (1962); Moss, R. A., Wetter, W. P.: Tetrahedron Lett. 22, 997 (1981)Google Scholar
  149. 143.
    Engels, P. S., Keys, D. E.: J. Am. Chem. Soc. 104, 6860 (1982); [1,5,6,(5)1]-elimination of an azide: Schultz, A. G., McMahon, W. G.: J. Org. Chem. 49, 1676 (1984)Google Scholar
  150. 144.
    Goerdeler, J. G., Schenk, H.: Chem. Ber. 98, 2954 (1965)Google Scholar
  151. 145.
    Etienne, A., Bonte, B., Druet, B.: Bull. Soc. Chim. France 1972, 251Google Scholar
  152. 146.
    Feist, F.: Liebigs Ann. Chem. 257, 253 (1890)Google Scholar
  153. 147.
    Kaupp, G., Knichala, B.: Chem. Ber. 118, 462 (1985)Google Scholar
  154. 148.
    Jones, D. W., Pomfret, A.: J. Chem. Soc. Chem. Commun. 1982, 919Google Scholar
  155. 149.
    Curtius, T., Jay, R.: J. pr. Chem. [2] 39, 27 (1889)Google Scholar
  156. 150.
    Zimmerman, H. E., Somasekhara, S.: J. Am. Chem. Soc. 82, 5865 (1960)Google Scholar
  157. 151.
    Binkley, R. W.: J. Org. Chem. 34, 931 (1969)Google Scholar
  158. 152.
    Brede, O., Mehnert, R., Naumann, W., Becker, H. G. O.: Ber. Bunsenges. Phys. Chem. 84, 666 (1980)Google Scholar
  159. 153.
    Akiba, K., Inamoto, N.: Heterocycles 7, 1131 (1977); Challis, B. C., Challis, J. A.: Supplement F (Part. 2): The chemistry of amino, nitroso, and nitro compounds and their derivatives (ed.) Patai, S., p. 1209 ff., Wiley, New York, 1982Google Scholar
  160. 154.
    Passing, H.: J. pr. Chem. 153, 1 (1939); cf. also Besthorn, E.: Ber. dtsch. chem. Ges. 43, 1519 (1910)Google Scholar
  161. 155.
    Seybold, G., Heibel, C.: Chem. Ber. 110, 1225 (1977)Google Scholar
  162. 156.
    Sheludyakov, V. D., Tkachev, A. S., Sheludyakova, S. V., Kozyukov, V., Mironov, V. F.: Zh. Obshch. Khim. 47, 2259 (1977); C.A. 88: 23041v (1979); it is possible that 299 is an intermediate in the formation of 300 from sodium benzoate and cyanobromide: Douglas, D. E., Eccles, J., Almond, A. E.: Can. J. Chem. 31, 1127 (1953); the decomposition of methylisocyanate at 500 °C via a radical chain which produces hydrogen, hydrogen cyanide and carbon monoxide (Blake, P. G., Ijadi-Maghsoodi, S.: Int. J. Chem. Kinetics 14, 945 (1982); here no rearrangement) is to be classified as a [1,2/2,1]-eliminationGoogle Scholar
  163. 157.
    Goerdeler, J., Nandi, K.: Chem. Ber. 114, 549 (1981); corresponding decomposition of an α-iminoisocyanate as a postulated intermediate: Goerdeler, J., Sappelt, R.: ibid. 100, 2064 (1967)Google Scholar
  164. 158.
    Kirmse, W., Ruetz, L.: Liebigs Ann. Chem. 726, 30 (1969)Google Scholar
  165. 159.
    Aldersley, M. F., Dean, F. M.: J. Chem. Soc. Chem. Commun. 1983, 331Google Scholar
  166. 160.
    Crank, G., Eastwood, F. W.: Austr. J. Chem. 17, 1392 (1964)Google Scholar
  167. 161.
    Jones, M., Reich, S. D.: J. Am. Chem. Soc. 89, 2935 (1967); additionally [1,2,1]-(bicyclobutene-derivative) and [1,2,3,(2)1]-e. (tropilidene and presumably acetylene); cf. lit. 142); corresponding reactions with the tosylhydrazonate of bicyclo[6,1,0]nona-2,4,6-triene-9-carbaldehyde (there is no distinction between the [1,(2)3,(4)5,1]-e. and the [1,(2)3,Δ,(6)7,1]-e. possibilities): Jones, M., Scott, L. T.: ibid. 89, 150 (1967); linear [1,2,(3)4,(5)1]-e. of diazocarbonyl compounds (“vinylogous Wolff-rearrangement”): Smith, A. B., Toder, B. H., Branca, S. J.: ibid. 106, 3995 (1984); Smith, A. B., Toder, B. H., Richmond, R. E., Branca, S. J.: ibid. 106, 4001 (1984)Google Scholar
  168. 162.
    Maier, G., Pfriem, S., Schäfer, U., Malsch, K.-D., Matusch, R.: Chem. Ber. 114, 3965 (1981)Google Scholar
  169. 163.
    Review: Wendisch, D.: Methoden der Organischen Chemie, Houben-Weyl-Müller, vol. IV/3, p. 71 ff., Tieme Verlag, Stuttgart, 1971Google Scholar
  170. 164.
    Liguori, A., Sindona, G., Uccella, N.: Tetrahedron 40, 1901 (1984)Google Scholar
  171. 165.
    3-Methylenecyclobutenes are stable compounds (e.g. p. 168, 425, 435 in Methoden der Organischen Chemie, Houben-Weyl-Müller, vol. IV/4) and therefore a [1,4,(3)2,1]-e. to give 2,4,4-trimethyl-3-methylenecyclobutene followed by a [1,2/2,1]-r. to give 319 does not applyGoogle Scholar
  172. 166.
    Fugua, S. A., Parkhurst, R. M., Silverstein, R. M.: Tetrahedron 20, 1625 (1964)Google Scholar
  173. 167.
    Gordon, H. J., Martin, J. C., McNab, H.: J. Chem. Soc. Perkin I 1984, 2129Google Scholar
  174. 168.
    Felix, D., Müller, R. K., Horn, U., Joos, R., Schreiber, J., Eschenmoser, E.: Helv. Chim. Acta 55, 1276 (1972); cf. p. 247ff. in lit. 14) Google Scholar
  175. 169.
    Schmidt, S. P., Pinhas, A. R., Hammons, J. H., Berson, J. A.: J. Am. Chem. Soc. 104, 6822 (1982)Google Scholar
  176. 170.
    The first and the last figure specify the relative positions of the addition, the intermediate figure specifies — for reasons of microscopic reversibility — the final point of migration of that group, which is displaced from the first named position; examples for [1,3,4]-and [1,4,5]-additions: McCabe, P., Stewart, A.: J. Chem. Soc. Chem. Commun. 1980, 100Google Scholar
  177. 171.
    Sternberg, L. H., Reeder, E.: J. Org. Chem. 26, 1111 (1961); further [1,1,2]-substitutions: “Favorskij-rearrangement”: (Organic Reactions 11, 261 (1960)); Jäckel, K.-P., Hanack, M.: Liebigs Ann. Chem. 1975, 2305; Kirmse, W., Siegfried, R., Wroblowsky, H.-J.: Chem. Ber. 116, 1880 (1983); [1,1,3]-substitutions: Reutov, O. A.: Pure Appl. Chem. 7, 203 (1963); Akiyama, T., Yoshida, Y., Hanawa, T., Sugimori, A.: Bull. Chem. Soc. Japan 56, 1795 (1983); [1,1,(2)3]-substitutions: lit. 105, 120); Skattebøl, L.: J. Org. Chem. 35, 3200 (1970); [1,1,(2)5]-substitutions (reductively): Sauers, R. R., Parent, R. A., Damle, S. B.: J. Am. Chem. Soc. 88, 2257 (1966); [1,2,6]-substitution: lit. 97); [1,2,7]-substitutions: lit. 51c, 98); Hanack, M., Kaiser, W.: Angew. Chem. 76, 572 (1964); Angew. Chem. Int. Ed. Engl. 3, 583 (1964); [1,1,2,3]-substitution: Kirmse, W., Wroblowsky, H. J.: Chem. Ber. 116, 1118 (1983)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Gerd Kaupp
    • 1
  1. 1.Fachbereich Chemie — Organische Chemie Ider Universität OldenburgOldenburgFRG

Personalised recommendations