Skip to main content

Halbleiter-Sperrschichtzähler

  • Conference paper
  • First Online:
Ergebnisse der Exakten Naturwissenschaften

Part of the book series: Ergebnisse der Exakten Naturwissenschaften ((STMP,volume 34))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Airapetyants, A. V., A. V. Kogan, N. M. Reinov, S. M. Ryvkin andJ. A. Sokolov: Germaniumn-p-α-counters use of low temperatures (russ.). Zhur. Tekh. Fiz.27, 1599 (1957). Amerik. Übers. in Soviet Phys. — Techn. Phys.2, 1482 (1957).

    Google Scholar 

  2. ——, andS. M. Ryvkin: Germanium electron-hole alphacounters characteristics and operation mechanism (russ.). Zhur. Tekh. Fiz.27, 95 (1957). Amerik. Übers. in Soviet Phys. — Techn. Phys.2, 79 (1957).

    Google Scholar 

  3. Amsel, G.: Experiments withn-p junction detectors. SNPD, S. 35.

    Google Scholar 

  4. ——P. Baruck etO. Smulkowski: Détecteur de particules lourdes a jonctionn-p au silicium. Compt. rend.250, 1468 (1960) oder Nuclear Instr.8, 92 (1960), oder SSRD, S. 21.

    Google Scholar 

  5. Anderson, O. L., H. Christensen andP. Andreatch: Technique for connecting electrical leads to semiconductors. J. Appl. Phys.28, 923 (1957).

    Google Scholar 

  6. Arechi, F. T., G. Gavalleri, E. Gatti andV. Svelto: Signal to noise ratio and resolving time in pulse amplifiers. SNPD, S. 226.

    Google Scholar 

  7. Babcock, R. V.: Fast neutron damage to silicon junction particle detectors. SSRD, S. 98.

    Google Scholar 

  8. ——R. E. Davis, S. L. Ruby, K. H. Sun andE. D. Wolley: Coated semiconductor is tiny neutron detector. Nucleonics17/4, 116 (1959) und Westinghouse Scient. Paper 5806–6600 — 13 (1958).

    Google Scholar 

  9. Backenstoss, G.: Evaluation of the surface concentration of diffused layers in silicon. Bell. System Tech. J.37, 699 (1958).

    Google Scholar 

  10. Baily, N. A., andJ. W. Mayer:p-n junction semiconductor radiation detector for use with beta- and gamma-ray emitting isotopes. Bull. Am. Phys. Soc.6, 107 (1961) oder Radiology76, 116 (1961).

    Google Scholar 

  11. Baldinger, E., W. Czaja u.A. Z. Farooqi:p-n-Übergänge als Festkörper-Ionisations-Kammern. Helv. Phys. Acta33, 551 (1960).

    Google Scholar 

  12. —— —— On the energy expended per electron-hole-pair produced inp-n-junction-detectors. Nuclear Instr. Methods10, 237 (1961).

    Google Scholar 

  13. Batdorf, R. L., andF. M. Smits: Diffusion of impurities into evaporating silicon. J. Appl. Phys.30, 259 (1959).

    Google Scholar 

  14. Benneth, W. R.: Electrical noise. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  15. Benveniste, J., R. Booth, A. Mitchell, C. Schrader andJ. Zenger: Solid State Detectors II. Livermore Rad. Lab. Univ. of California, Berkeley, Rept. on Nucl. Phys. 148 (1960).

    Google Scholar 

  16. Bilaniuk, O. M., andB. B. Marsh: Multi-channel unit of junction counters for nuclear spectroscopy. Bull. Am. Phys. Soc.5, 226 (1960).

    Google Scholar 

  17. Bittel, H.: Schwankungserscheinungen bei der Elektrizitätsleitung in Festkörpern. Ergeb. exakt. Naturw.31, 84 (1959).

    Google Scholar 

  18. Blankenship, J. L.: Diskuss. Bem. SNPD, S. 6.

    Google Scholar 

  19. —— Silicon surface barrier spectrometers. Proc. of the sixth tripartite instrumentation conf., Chalk River, Ontario, Pt.5, 75 (1959).

    Google Scholar 

  20. -- Surface barrier detectors. SNPD, S. 43.

    Google Scholar 

  21. ——, andC. J. Borkowski: Semiconductor surface barrier counters of improved energy resolution. Bull. Am. Phys. Soc.5, 38 (1960).

    Google Scholar 

  22. -- -- Performance of silicon surface barrier detectors with charge sensitive amplifiers. SSRD, S. 17.

    Google Scholar 

  23. —— —— Silicon surface-barrier nuclear particle spectrometer. I.R.E. Trans. Nucl. Sci. NS-7, Nr. 2–3, 190 (1960).

    Google Scholar 

  24. Bok, J., etR. Schuttler: Utilisation de dispositifs à semi-conducteurs pour la détection et la dosimétrie de particules nucléaires. Réunion du Groupe Dosimetrie d'Euratom le 13 Janvier 1961 à Bruxelles.

    Google Scholar 

  25. Bomal, R., L. Koch, N. van Dong etC. Schneider: Utilisation des semiconducteurs comme détecteurs de rayonnements nucléaires. Tagungsberichte IAEA, Paris 1958, S. 137.

    Google Scholar 

  26. Bond, W. L., andF. M. Smits: The use of an interference microscope for measurement of extremely thin surface layers. Bell. System Tech. J.35, 1209 (1956).

    Google Scholar 

  27. Bothe, W.: Zur Theorie der Neutronensonden. Z. Physik120, 437 (1943).

    Google Scholar 

  28. Briggs, H.: Infra-red absorption in silicon. Phys. Rev.77, 727 (1950).

    Google Scholar 

  29. —— Infra-red absorption in high purity germanium. J. Opt. Soc. Am.42, 686 (1952).

    Google Scholar 

  30. Bromley, D. A.: Diskuss. Bem. SNPD, S. 46.

    Google Scholar 

  31. -- Semiconductor detectors in nucelar physics. SNPD, S. 61.

    Google Scholar 

  32. ——J. A. Kuehner andE. Almqvist: Resonant elastic scattering of C12 by carbon. Phys. Rev. Letters4, 365 (1960).

    Google Scholar 

  33. Brown, W. L.: Introduction to semiconductor particle detectors. SSRD, S. 2.

    Google Scholar 

  34. Brown, D. C., andB. P. Faraday: A transistorized radiation monitor. Nuclear Instr.1, 133 (1957).

    Google Scholar 

  35. Buck, T. M.: Surface effects on silicon particle detectors. SNPD, S. 111.

    Google Scholar 

  36. Carlson, R. O.: Gold on silicon surface. J. Appl. Phys.29, 1001 (1958).

    Google Scholar 

  37. Chase, R. L., W. A. Higinbotham andG. L. Miller: Amplifiers for use withp-n junction radiation detectors. SSRD, S. 147

    Google Scholar 

  38. Chetham-Strode, A., J. R. Tarrant andR. J. Silva: Application of silicon detectors to alpha particle spectroscopy. SSRD, S. 59.

    Google Scholar 

  39. Chynoweth, A. G.: Multiplication processes inp-n- junctions. SNPD, S. 171.

    Google Scholar 

  40. —— Uniform siliconp-n junctions. II. Ionisation rates for electrons. J. Appl. Phys.31, 1161 (1960).

    Google Scholar 

  41. -- Energy required for electron-hole pair formation in silicon. SNPD, S. 95.

    Google Scholar 

  42. ——, andK. G. McKay: Threshold energy for electron-hole pair-production by electrons in silicon. Phys. Rev.108, 29 (1957).

    Google Scholar 

  43. —— —— Internal field emission in siliconp-n junction. Phys. Rev.106, 418 (1957).

    Google Scholar 

  44. Collins, C. B., R. O. Carlson andC. J. Gallagher: Properties of golddoped silicon. Phys. Rev.105, 1168 (1957).

    Google Scholar 

  45. Conwell, E. M.: Properties of silicon and germanium II. Proc. I.R.E.46, 1281 (1958).

    Google Scholar 

  46. Crawford, G. W.: Cosmic radiation measurement problems. SNPD, S. 57.

    Google Scholar 

  47. Cummerow, R. L.: Photovoltaic effect inp-n junctions. Phys. Rev.95, 16 (1954).

    Google Scholar 

  48. Curtis, O. L.: Diskuss. Bem. SNPD, S. 133.

    Google Scholar 

  49. Dabbs, J. W. T., F. J. Walter andL. D. Roberts: Broad-area germaniump-n-junction counters. ORNL Report2501, 73 (1958).

    Google Scholar 

  50. Dash, W. C., andR. Newman: Intrinsic absorption in single crystal Ge and Si at 77°K and 300°K. Phys. Rev.99, 1151 (1955).

    Google Scholar 

  51. Davis, W. D.: Silicon crystal counters. J. Appl. Phys.29, 231 (1958).

    Google Scholar 

  52. Dearnaley, G.: Diskuss. Bem. SNPD, S. 7.

    Google Scholar 

  53. -- Experience at harwell with surface-barrier detectors. SSRD, S. 11.

    Google Scholar 

  54. --, andA. B. Whitehead: Surface barrier charged-particle detectors. A.E.R.E.-Report R3278 (1960).

    Google Scholar 

  55. Donovan, P. F.: Paint-on particle detectors (Recipe No. 2). SNPD, S. 268.

    Google Scholar 

  56. -- Diskuss. Bem. SNPD, S. 133.

    Google Scholar 

  57. ——G. L. Miller andB. M. Foreman: Application of thick-depletion-layer siliconp-n-junctions to proportional detection of gamma radiation and penetrating nuclear particles. Bull. Am. Phys. Soc.5, 355 (1960).

    Google Scholar 

  58. Drahokoupil, J., M. Malkovská andJ. Tauc: Quantum efficiency of the photo electric effect in germanium for X-rays. Czech. J. Phys.7, 57 (1957).

    Google Scholar 

  59. Elliot, J. H.: Experimental results with a lithium drifted silicon diode radiation detector. Bull. Am. Phys. Soc.5, 501 (1960).

    Google Scholar 

  60. Emmer, T. L.: Low noise transistor amplifiers for solid state detectors. SSRD, S.140.

    Google Scholar 

  61. Engler, H. D.: Über den Einzelnachweis vonβ-Teilchen mit Germaniumund Silizium-Flächendioden. Z. Naturforsch.15a, 82 (1960).

    Google Scholar 

  62. —— Legierte Silizium-Dioden als Teilchenzähler. Nucleonik2, 215 (1960).

    Google Scholar 

  63. Evans, R. D.: The Atomic Nucleus. New York: McGraw-Hill Book Co. 1955.

    Google Scholar 

  64. Fairstein, E.: Nonblocking double-time linear pulse amplifier. Rev. Sci. Instr.27, 475 (1956).

    Google Scholar 

  65. -- Linear amplifier and preamplifier for alpha energy analysis circuit diagramm. ORNL Instrumentation and Controls Division, Drawing Q-2069 (1960).

    Google Scholar 

  66. -- Preamplifier configurations and noise. SNPD, S. 210.

    Google Scholar 

  67. -- Considerations in the design of pulse amplifiers for use with solid state radiation derectors. SSRD, S. 129.

    Google Scholar 

  68. Fano, U.: Ionization yield of radiation. II. The fluctuations of the number of ions. Phys. Rev.72, 26 (1947).

    Google Scholar 

  69. Flaschen, S. S., A. D. Pearson andJ. L. Kalnins: Improvement of semiconductor surface by low melting glasses, possibly functioning as ion getters. J. Appl. Phys.31, 431 (1960).

    Google Scholar 

  70. Fonger, W. H., J. J. Loferski andP. Rappaport: Radiation induced noise inp-n-junctions. J. Appl. Phys.29, 588 (1958).

    Google Scholar 

  71. Fox, R. J.: Procedure fordE/d x silicon surface-barrier diodes. SNPD, S. 270.

    Google Scholar 

  72. Friedland, S. S., J. W. Mayer, J. M. Denney andF. Keywell: Room temperature operatedp-n-junctions as charged particle detectors. Rev. Sci. Instr.31, 74 (1960).

    Google Scholar 

  73. —— —— andJ. S. Wiggins: Tiny semiconductor is fast, linear detector. Nucleonics18/2, 54 (1960).

    Google Scholar 

  74. -- -- -- The solid state ionization chamber. Hughes Aircraft Co., Culver City, Calif. Techn. Memo. 626 (1959).

    Google Scholar 

  75. -- -- -- The solid state ionization chamber. I.R.E. Trans. Nucl. Sci. NS-7 Nr. 2–3, 181 (1960).

    Google Scholar 

  76. Frosch, C. J., andL. Derick: Surface protection and selective masking during diffusion in silicon. J. Electrochem. Soc.104, 547 (1957).

    Google Scholar 

  77. —— —— Diffusion control by carrier gas composition. J. Electrochem. Soc.105, 695 (1958).

    Google Scholar 

  78. Fuller, C. S., andJ. A. Ditzenberger: Diffusion of donor and acceptor elements in silicon. J. Appl. Phys.27, 544 (1956).

    Google Scholar 

  79. Garlick, G. F. J.: Photoconductivity. Handbuch der Physik19, 316 (1956).

    Google Scholar 

  80. Gibson, W. M.: Oxide edge protection. SNPD, S. 232.

    Google Scholar 

  81. Gobeli, G. W.: Range-energy relation for low-energy alpha particles in Si, Ge, and InSb. Phys. Rev.103, 275 (1956).

    Google Scholar 

  82. Goodman, C.: Introduction to Pile Theory. Cambridge Mass. USA. Addison-Wesley Press Inc. 1952.

    Google Scholar 

  83. Gordon, G. E., G. W. Kilian, A. E. Larsh andT. Sikkeland: Siliconp-n-junctions as charged particle detectors. Livermore Rad. Lab., Univ. of California, Berkeley, Report9052 (1960).

    Google Scholar 

  84. Gorodetsky, A. F., V. G. Melnik, J. G. Melnik: A method for making an ohmic contact with silicon (russ.). Fizika Tverdogo Tela1, 173 (1959). Amerik. Übers. in: Soviet Phys.-Solid State1, 153 (1959).

    Google Scholar 

  85. Gossick, B. R.: On the transient behavior of semiconductor rectifiers. J. Appl. Phys.26, 1356 (1955).

    Google Scholar 

  86. —— On the transient behavior of semiconductor rectifiers. J. Appl. Phys.27, 905 (1956).

    Google Scholar 

  87. Goulding, F. S., andW. L. Hansen: Leakage current in semi-conductor junction radiation detectors and its influence on particle energy resolution. UCRL,9436 (1961).

    Google Scholar 

  88. Grainger, R. J., J. W. Mayer, J. S. Wiggins andS. S. Friedland: Further characteristics of the solid-state ionization chamber. Bull. Am. Phys. Soc.2, 265 (1960).

    Google Scholar 

  89. -- -- andJ. W. Oliver: Temperature behavior ofp-n-junction detectors. SSRD, S. 116.

    Google Scholar 

  90. Guggenbühl, W.: Messungen über das Rauschen von Flächendioden und Flächentransistoren im Gebiet des weißen Spektrums. Nachrichtentechn. Fachber.2, 97 (1955).

    Google Scholar 

  91. ——, u.M. J. O. Strutt: Experimentelle Bestätigung der Schottkyschen Rauschformeln an neueren Halbleiter-Flächendioden im Bereich des weißen Rauschspektrums. A.E.Ü.9, 103 (1955).

    Google Scholar 

  92. Haeberli, W., P. Huber u.E. Baldinger: Absolutwerte der Arbeit pro Ionenpaar von Po-α-Teilchen in den Gasen He, N2, A, O2, CO2. Helv. Phys. Acta25, 467 (1952).

    Google Scholar 

  93. Halbert, M. L., andJ. L. Blankenship: Response of semiconductor surface-barrier counters to nitrogen ions and alpha particles. ORNL-LR-DWG März 1960.

    Google Scholar 

  94. —— —— andM. V. Goldman: Response of surface-barrier semiconductor counters to N14 ions. Bull. Am. Phys. Soc.5, 38 (1960).

    Google Scholar 

  95. Hansen, M., andK. Anderko: Constitution of Binary Alloys. New York: McGraw-Hill Book Co. 1958.

    Google Scholar 

  96. Hansen, W., andF. S. Goulding: Leakage, noise, guard rings and resolution in detectors. SNPD, S. 202.

    Google Scholar 

  97. Harten, H.-U., u.W. Schultz: Einfluß von Diffusionslänge und Oberflächenrekombination auf den Sperrschicht-Photoeffekt an Germanium. Z. Physik141, 319 (1955).

    Google Scholar 

  98. Heerden, P. J. van: The Crystal Counter. Amsterdam, V. V. Noord-Hollandsche Uitgevers Maatschappij 1945.

    Google Scholar 

  99. —— Photocurrent in cadmium sulfide. Phys. Rev.106, 468 (1957),

    Google Scholar 

  100. Henisch, H. K.: Rectifying Semi-Conductor Contacts. Oxford: Clarendon Press 1957.

    Google Scholar 

  101. Herlet, A., u.E. Spenke: Gleichrichter mitp-i-n bzw.p-s-n-Struktur unter Gleichstrombelastung. Z. angew. Physik 7, 99, 149, 195 (1955).

    Google Scholar 

  102. Hertz, C. H., andR. Gremmelmaier: Miniature semiconductor dose rate meter. Acta Radiologica54, 69 (1960).

    Google Scholar 

  103. Hofstadter, R.: Crystal counters. Nucleonics 4/4, 2 (1949) und 4/5, 39 (1949) und Proc. I.R.E.38, 726 (1950).

    Google Scholar 

  104. ——J. C. D. Milton andS. L. Ridgeway: Behavior of silver chloride crystal counters. Phys. Rev.72, 977 (1947).

    Google Scholar 

  105. Jackson, R. W.: Semiconductor junction alpha detectors. Phys. in Canada15, 21 (1959).

    Google Scholar 

  106. --P. P. Webb andR. L. Williams: Improvements in encapsulated silicon junction alpha-detectors. SSRD, S. 29.

    Google Scholar 

  107. Jäntsch, O.: Sperrkennlinien mit Oberflächendurchbruch von Silizium-p spn-Gleichrichtern. Z. Naturforsch.15a, 302 (1960).

    Google Scholar 

  108. —— Das Sperrverhalten von Siliziumgleichrichtern in feuchten Gasen. Z. Naturforsch.15a, 141 (1960).

    Google Scholar 

  109. Jentschke, W.: Energien und Massen der Urankernbruchstücke bei Bestrahlung mit Neutronen. Z. Physik120, 165 (1943).

    Google Scholar 

  110. Joyner, W. T., H. W. Schmitt, J. H. Neiler andR. J. Silva: Energy spectra of correlated fragment pairs from the spontaneous fission of Cf252. SSRD, S. 54.

    Google Scholar 

  111. Karstensen, F.: Über die Diffusion in Germanium-Kristallen, die eine Korngrenze enthalten. Z. Naturforsch.4a, 1031 (1959).

    Google Scholar 

  112. Kingston, R. H., andS. F. Neustadter: Calculation of the space charge, electric field, and free carrier concentration at the surface of a semiconductor. J. Appl. Phys.26, 718 (1955).

    Google Scholar 

  113. Klingensmith, R. W.: The effect of a high radiation environment on goldsilicon charged particle detectors. SSRD, S. 112.

    Google Scholar 

  114. Koch, L.: La détection des rayonnements nucléaires par les semi-conducteurs. L'Onde Électrique404, 807 (1960).

    Google Scholar 

  115. ——J. Messier etQ. Kerns: Mesure du coefficient de collection de charges dans des détecteurs de particules à jonctionp-n. Nouvelle methode de measure des durées de vie. J. Electronics and Control8, 289 (1960).

    Google Scholar 

  116. -- -- --: Nuclear method of measurement of diffusion length inp-n-junctions. SSRD, S. 83.

    Google Scholar 

  117. —— —— etJ. Valin: Description des jonctions NIP utilisées comme détecteurs de particules nucléaires. Spectrométrie des particules ionisantes de grande énergie. Détection des rayonsγ. Compt. rend.251, 2912 (1960) oder SNPD, S. 52.

    Google Scholar 

  118. -- -- -- N.I.P. Silicon junctions detectors. SSRD, S. 43.

    Google Scholar 

  119. Kohler, T. R.: Semiconductor X-ray detectors. SNPD, S. 193.

    Google Scholar 

  120. Landolt-Börnstein: Zahlenwerte und Funktionen. 6. Aufl. 1. Bd. 4. Tl. Berlin-Göttingen-Heidelberg: Springer-Verlag 1955.

    Google Scholar 

  121. Larabee, R. D.: High field effect in boron-doped silicon. Phys. Rev.116, 300 (1959).

    Google Scholar 

  122. Lint, V. A. J. van, H. Roth andE. G. Wikner: Energy lost per electron-hole pair created in Ge, Si, and Te. Bull. Am. Phys. Soc.4, 457 (1959).

    Google Scholar 

  123. Lintner, K., u.E. Schmid: Bedeutung von Korpuskularbestrahlung für die Eigenschaften von Festkörpern. Ergeb. Exakt. Naturw.38, 302 (1955).

    Google Scholar 

  124. Loman, G. T.: Pre-electrode semiconductor preparation. In “Transistor Technology” Vol. I, p. 303. Ed.H. E. Bridgers, J. H. Scaff andJ. N. Shive. Princeton: D. van Nostrand Co. 1958.

    Google Scholar 

  125. Love, T. A., andR. B. Murray: Fast-neutron detection and spectroscopy using a solid state detector. Bull. Am. Phys. Soc.5, 416 (1960).

    Google Scholar 

  126. -- -- Fast neutron spectroscopy with dual detectors. SNPD, S. 196.

    Google Scholar 

  127. -- -- The use of surface-barrier diodes for fast-neutron spectroscopy. SSRD, S. 91.

    Google Scholar 

  128. Madelung, O.: Der Leitungsmechanismus in homöopolaren Halbleitern. Ergeb. exakt. Naturw.27, 56 (1953).

    Google Scholar 

  129. ——: Halbleiter. Handbuch der Physik20, 1 (1957).

    Google Scholar 

  130. Mann, H.: Diskuss. Bem. SNPD, S. 5.

    Google Scholar 

  131. -- Diskuss. Bem. SNPD, S. 41.

    Google Scholar 

  132. Mann, H. M., andW. W. Managan: Detection of minimum ionizing particles in siliconp-n-junctions. Rev. Sci. Instr.31, 908 (1960).

    Google Scholar 

  133. --J. W. Haslett andG. P. Lietz: Pulse rise time for charged particles inp-n-junctions. SSRD, S. 151.

    Google Scholar 

  134. Mayer, J. W.: Performance of germanium and silicon surface barrier diodes as alpha-particle spectrometers. J. Appl. Phys.30, 1937 (1959).

    Google Scholar 

  135. -- Diskuss. Bem. SNPD, S. 5.

    Google Scholar 

  136. -- The development of the junction detectors. I.R.E. Trans. Nucl. Sci. NS-7, Nr. 2–3, 178 (1960).

    Google Scholar 

  137. --N. A. Baily andH. L. Dunlap: Characteristics of ion-driftedp-i-n-junction particle detectors. Vortrag auf der Conference on Nuclear Electronics, Belgrad, 1961.

    Google Scholar 

  138. ——, andH. L. Dunlap: Characteristics of ion-drifted junction detectors. Bull. Am. Phys. Soc.6, 107 (1961).

    Google Scholar 

  139. ——, andB. R. Gossick: Use of Au-Ge surface barriers as alpha-particle spectrometers. Bull. Am. Phys. Soc.1, 322 (1956).

    Google Scholar 

  140. —— ——: Use of Au-Ge broad area barrier as alpha-particle spectrometer. Rev. Sci. Instr.27, 407 (1956).

    Google Scholar 

  141. ——R. J. Grainger, J. W. Oliver, J. S. Wiggins andS. S. Friedland: Performance of large areap-n-junction particle spectrometers. Bull. Am. Phys. Soc.5, 355 (1960).

    Google Scholar 

  142. McDonald, B., andF. C. Collins: Anodic sectioning of diffused siliconp-n-junctions. Bull. Am. Phys. Soc.6, 106 (1961).

    Google Scholar 

  143. McKay, K. G.: Germanium counter. Phys. Rev.76, 1537 (1949).

    Google Scholar 

  144. —— Electron-hole production in germanium by alpha-particles. Phys. Rev.84, 829 (1951).

    Google Scholar 

  145. —— Then-p-n-junction as a model for secondary photoconductivity. Phys. Rev.84, 833 (1951).

    Google Scholar 

  146. ——, andK. B. McAfee: Electron multiplication in silicon and germanium. Phys. Rev.91, 1079 (1953).

    Google Scholar 

  147. McKelvey, J. P., andR. L. Longini: Volume and surface recombination rates for injected carriers in germanium. J. Appl. Phys.25, 634 (1954).

    Google Scholar 

  148. McKenzie, J. M.: Diskuss. Bem. SNPD, S. 132.

    Google Scholar 

  149. —— Siliconp-n-junctions as particle spectrometers. Bull. Am. Phys. Soc.5, 355 (1960).

    Google Scholar 

  150. ——, andD. A. Bromley: Gold-germanium junctions as particle spectrometers. Proc. IEE106 B, 731, 746 (1959).

    Google Scholar 

  151. —— —— Oberservation of charged particle reaction products. Phys. Rev. Letters2, 303 (1959).

    Google Scholar 

  152. —— —— Room temperature semiconductor particle spectrometer. Bull. Am. Phys. Soc.4, 422 (1959).

    Google Scholar 

  153. --, andG. T. Ewan: Semiconductor electron detectors. SSRD, S. 50.

    Google Scholar 

  154. --, andJ. B. S. Waugh: Silicon junctions as particle spectrometers. I.R.E. Trans. Nucl. Sci.NS-7, Nr. 2–3, 195 (1960).

    Google Scholar 

  155. Miller, G. L.: Diskuss. Bem. SNPD, S. 5.

    Google Scholar 

  156. -- Diffused junction detectors. SNPD, S. 19.

    Google Scholar 

  157. -- Diskuss. Bem. SNPD, S. 27.

    Google Scholar 

  158. Miller, L. E.: Uniformity of junctions in diffused silicon devices. In “Properties of Elemental and Compound Semiconductors”, Vol.5. Ed.H. C. Gates. New York: Interscience Publishers 1960.

    Google Scholar 

  159. Miller, G. L., W. L. Brown, P. F. Donovan andI. M. Mackintosh: Siliconp-n-junction radiation detectors. I.R.E. Trans. Nucl. Sci.NS-7, Nr. 2–3, 185 (1960).

    Google Scholar 

  160. --B. M. Foreman, L. C. L. Yuan, P. F. Donovan andW. M. Gibson: Application of solid state detectors to high energy physics. SSRD, S. 73.

    Google Scholar 

  161. Nordberg, E.: Gold-silicon surface barrier counters. Bull. Am. Phys. Soc.4, 457 (1957).

    Google Scholar 

  162. Orman, C., H. Y. Fan, G. F. Goldsmith andK. Lark-Horovitz: Germanium P-N-barriers as counters. Phys. Rev.78, 646 (1950).

    Google Scholar 

  163. -- M. S. Thesis, Purdue Univ. Physics Departm. 1951.

    Google Scholar 

  164. Oswald, F., u.R. Scharde: Über die Bestimmung der optischen Konstanten von Halbleitern des Typus AIII BV im Infraroten. Z. Naturforsch.9a, 611 (1954).

    Google Scholar 

  165. Pantchechnikoff, J. I.: Large area germanium photocell. Rev. Sci. Instr.23, 135 (1952).

    Google Scholar 

  166. Patalong, H.: Über Legierungsverfahren zur Herstellung von Silizium-Gleichrichtern. Diss. Aachen 1956 (unveröffentlicht).

    Google Scholar 

  167. Patskevich, V. M., V. S. Vavilov andL. S. Smirnov: Energy of ionization by electrons in silicon crystals (russ.). Zhur. Eksptl. i. Teoret. Fiz.33, 804 (1957). Amerik. Übers. in Sowj. Phys. JETP6, 619 (1958).

    Google Scholar 

  168. Patter, D. M. van, andW. Whaling: Nuclear disintegration energies. Rev. Mod. Phys.26, 402 (1954) und29, 757 (1957).

    Google Scholar 

  169. Peet, C. S.: Diskuss. Bem. SNPD, S. 168.

    Google Scholar 

  170. Pell, E. M.: Ion drift in ann-p-junction. J. Appl. Phys.31, 291 (1960).

    Google Scholar 

  171. -- The ion-drift process. SNPD, S. 136.

    Google Scholar 

  172. Pfister, H.: Bestimmung von Diffusionslängen und des mittleren Energiebedarfs zur Bildung eines Elektron-Loch-Paares durch Röntgenbestrahlung vonp-n-Sperrschichten (unveröffentlicht).

    Google Scholar 

  173. Phelps, C. G.: Silicon wafers ford E/d x detectors. SNPD, S. 273.

    Google Scholar 

  174. Prior, A. C.: The Field-dependence of carrier mobility in silicon and germanium. J. Phys. Chem. Solids12, 175 (1959).

    Google Scholar 

  175. Putten, J. D. van, andJ. C. Van der Velde: Solid-state detector for penetrating and minimum ionizing particles. Bull. Am. Phys.5, 197 (1960).

    Google Scholar 

  176. Rappaport, P.: The electron-voltaic effect inp-n-junctions induced by betaparticle bombardment. Phys. Rev.93, 246 (1954).

    Google Scholar 

  177. ——,J. J. Loferski andE. G. Linder: The electron-voltaic effect in germanium and siliconp-n-junction. RCA Rev.17, 100 (1956).

    Google Scholar 

  178. Rath, H. L.: Welche Möglichkeiten bieten Scheinwiderstandsmessungen an Sperrschichten? Nachrichtentechn. Fachber.5, 15 (1956).

    Google Scholar 

  179. Raymo, C. T., J. W. Mayer, J. S. Wiggins, andS. S. Friedland: Performance ofp-n-junction particle detectors under gamma irradiation. Bull. Am. Phys. Soc.5, 354 (1960).

    Google Scholar 

  180. -- -- Transient response ofp-n-junction detectors. SSRD, S.157.

    Google Scholar 

  181. Rediker, R. H.: GaAs diodes: Their fabrication and application. SNPD, S. 164.

    Google Scholar 

  182. Riehl, N., u.R. Sizmann: Verändrung der Materie durch Bestrahlung. In „Kerntechnik“, herausgegeben vonW. Riezler u.W. Walcher, Stuttgart: B. G. Teubner 1958.

    Google Scholar 

  183. Robbins, H., andB. Schwartz: Chemical etching of silicon. I. The system HF, HNO3, and H2O. J. Electrochem. Soc.106, 505 (1959).

    Google Scholar 

  184. Rossi, B.: High Energy Particles. New York: Prentice Hall, Inc. 1952.

    Google Scholar 

  185. Ryder, E. J.: Mobility of holes and electrons in high electric fields. Phys. Rev.90, 766 (1953).

    Google Scholar 

  186. —— andW. Schockley: Mobilities of electrons in high electric fields. Phys. Rev.81, 139 (1951).

    Google Scholar 

  187. Ryvkin, S. M., A. P. Bogomasov, B. M. Konovalenko, O. A. Matveev: Semiconductor device for γ-rays indication (russ.). Zhur. Tekh. Fiz.27, 1601 (1957).

    Google Scholar 

  188. Sah, C. T., R. N. Noyce andW. Shockley: Carrier generation and recombination inp-n-junction characteristics. Proc. I.R.E.45, 1228 (1957).

    Google Scholar 

  189. Salzberg, B., andK. Siegel: Semiconductorp-n-junction radiation counters. Proc. I.R.E.46, 1536 (1958).

    Google Scholar 

  190. Scanlon, W. W.: Properties of heavy atom semiconductors. SNPD, S.145.

    Google Scholar 

  191. Schmitt, H. W., u.J. H. Neiler: Diskuss. Bem. SNPD, S.27.

    Google Scholar 

  192. Schweinler, H. C.: Energy loss of moving charged particles in a valence or ionic crystal. SNPD, S.91.

    Google Scholar 

  193. Segrè, E., andC. Wiegand: Stopping power of various substances for fission fragments. Phys. Rev.70, 808 (1946).

    Google Scholar 

  194. Seitz, F.: Radiation effects in solids. Phys. Today5/6, 6 (1951).

    Google Scholar 

  195. ——, andJ. S. Koehler: Diplacement of atoms during irradiation. Solid State Physics. Ed.F. Seitz, andD. Turnbull, Vol.2, p. 305. New York: Academic Press Inc. 1956.

    Google Scholar 

  196. Shive, J. N.: The properties of germanium-phototransistors. J. Opt. Soc. Am.43, 239 (1953).

    Google Scholar 

  197. —— The Properties, Physics and Design of Semiconductor Devices, p. 350. Princeton: D. van Nostrand Co. 1959.

    Google Scholar 

  198. —— Contacts and electrodes. In: “Transistor Technology”, Vol. I, p. 323. Ed.H. E. Bridgers, J. H. Scaff andJ. N. Shive. Princeton: D. van Nostrand Co. 1958.

    Google Scholar 

  199. Shockley, W.: On the surface states associated with a potential. Phys. Rev.56, 317 (1939).

    Google Scholar 

  200. —— The theory ofp-n-junctions in semiconductors andp-n-junction transistors. Bell. System Tech. J.28, 435 (1949).

    Google Scholar 

  201. —— Electrons and holes in semiconductors. New York: D. van Nostrand Co. 1950.

    Google Scholar 

  202. —— Problems related top-n-junctions in silicon. Czech. J. Phys.B 11, 81 (1961) oder Solid-State Electronics2, 35 (1961).

    Google Scholar 

  203. Siegbahn, K.: Beta- and Gamma-Ray Spectroscopy. Amsterdam: North Holland Publishing Co. 1955.

    Google Scholar 

  204. Silverman, S. J., andD. R. Benn: Junction delineation in silicon by gold chemiplating. J. Electrochem. Soc.105, 170 (1958).

    Google Scholar 

  205. Smits, F. M.: Measurements of sheet resistivities with the four-point probe. Bell. System Tech. J.37, 714 (1958).

    Google Scholar 

  206. —— Formation of junction structures by solid state diffusion. Proc. I.R.E.46, 1049 (1958).

    Google Scholar 

  207. —— Diffusion in homöopolaren Halbleitern. Ergeb. exakt. Naturw.31, 167 (1959).

    Google Scholar 

  208. Spenke, E.: Elektronische Halbleiter. Berlin-Göttingen-Heidelberg: Springer-Verlag 1956.

    Google Scholar 

  209. Statz, H.: Semiconductor surface effects. SNPD, S.99.

    Google Scholar 

  210. ——G. A. DeMars, L. Davis jr. andA. Adams jr.: Surface states on silicon and germanium surfaces. Phys. Rev.101, 1272 (1956);106, 455 (1957).

    Google Scholar 

  211. Stebler, A., u.P. Huber: Eintrittsresonanzen schneller Neutronen an N14 und S32. Helv. Phys. Acta21, 59 (1948).

    Google Scholar 

  212. Steinberg, R.: Semiconductor fission probe. Nucleonics18/2, 85 (1960).

    Google Scholar 

  213. Strutt, M. J. O.: Rauschursachen und Rauschspektren in Elektronenröhren, Halbleiterdioden und Transistoren. Nachrichtentechn. Fachber.2, 49 (1955).

    Google Scholar 

  214. Sullivan, M. V., andJ. H. Eigler: Electroless nickel plating for making ohmic contacts to silicon. J. Elektrochem. Soc.104, 226 (1957).

    Google Scholar 

  215. Tannenbaum, E.: Detailed analysis of thin phosphorus-diffused layers inp-type silicon. Solid-State Electronics2, 123 (1961).

    Google Scholar 

  216. Turner, D. R.: Electroplating metal contacts on germanium and silicon. J. Electrochem. Soc.106, 786 (1959).

    Google Scholar 

  217. Valdes, L. B.: Resistivity measurements on germanium for transistors. Proc. I.R.E.42, 420 (1954).

    Google Scholar 

  218. Vavilov, V. S., L. S. Smirnov andV. M. Patskevich: Energy of ionization by electrons in germanium crystals (russ.). Doklady Akad. Nauk S.S.S.R.112, 1020 (1957). Amerik. Übers. in Soviet Phys. Doklady2, 93 (1957).

    Google Scholar 

  219. Victoreen, J. A.: The calculation of X-ray mass absorption coefficients. J. Appl. Phys.20, 1141 (1949).

    Google Scholar 

  220. Walter, F. J.: Diskuss. Bem. SNPD, S. 6.

    Google Scholar 

  221. ——J. W. T. Dabbs andL. D. Roberts: Fission fragment counting with germaniumn-p-junction counters. Bull. Am. Phys. Soc.3, 181 (1958).

    Google Scholar 

  222. —— —— —— Behavior of semiconductor counters. Bull. Am. Phys. Soc.5, 38 (1960).

    Google Scholar 

  223. -- -- -- Semiconductor particle counters at low temperatures. SSRD, S. 79.

    Google Scholar 

  224. —— —— —— Large area germanium surface-barrier counters. Rev. Sci. Instr.31, 756 (1960).

    Google Scholar 

  225. —— —— —— andH. W. Wright: Broad-area germanium surface barrier counters. ORNL Report2718, 53 (1959).

    Google Scholar 

  226. -- -- -- -- A study of germanium surface-barrier counters. ORNL Report58-11-99 (1959).

    Google Scholar 

  227. ——L. D. Roberts andJ. W. T. Dabbs: Low-temperature characteristics of germaniump-n-junction counters. Bull. Am. Phys. Soc.3, 304 (1958).

    Google Scholar 

  228. Waltz, M. C.: Gold-bonded contacts. In „Transistor Technology”, Vol. I., p. 375. Ed.H. E. Bridgers, J. H. Scaff andJ. N. Shive. Princeton: D. van Nostrand Co. 1958.

    Google Scholar 

  229. Webb, P. P., R. L. Williams andR. W. Jackson: An encapsulated silicon junction alpha-particle detector. I.R.E. Trans. Nucl. Sci.NS-7, Nr. 2–3, 199 (1960).

    Google Scholar 

  230. Wegner, H. E.:d E/d x-E semiconducter detector systems. SNPD, S. 74.

    Google Scholar 

  231. -- Diskuss. Bem. SNPD, S. 7 und 8.

    Google Scholar 

  232. --d E/d x andE semiconductor detector systems for 25 MeV-He3 and alpha particles. SSRD, S. 103.

    Google Scholar 

  233. Welker, H.: Über neue halbleitende Verbindungen. Z. Naturforsch.7a, 744 (1952);8a, 248 (1953).

    Google Scholar 

  234. —— Semiconducting intermetallic compounds. Physica20, 893 (1954).

    Google Scholar 

  235. Wertheim, G. K.: Radiation-induced defects in silicon. SNPD, S. 128.

    Google Scholar 

  236. Whaling, W.: The energy loss of charged particles in matter. Handbuch der Physik34, 193 (1958).

    Google Scholar 

  237. White, F. A.: Semiconductor electron multiplier. SNPD, S. 177.

    Google Scholar 

  238. Wiesner, R.: Derp-n-Photoeffekt. Halbleiterprobleme Bd. III. Braunschweig: Vieweg u. Sohn 1956.

    Google Scholar 

  239. Williams, R. L.: New semiconductor nuclear particle detector. Bull. Am. Phys. Soc.5, 354 (1960).

    Google Scholar 

  240. -- Encapsulated detectors. SNPD, S. 28.

    Google Scholar 

  241. -- Diskuss. Bem. SNPD, S. 132.

    Google Scholar 

  242. --, andP. P. Webb: Transistor form of nuclear particle detector. SNPD, S. 182 und SSRD, S. 35.

    Google Scholar 

  243. Wooldridge, D. E., A. J. Ahearm andJ. A. Burton: Conductivity pulses induced in diamond by alpha-particles. Phys. Rev.71, 913 (1947).

    Google Scholar 

  244. Yavin, A. J.: Detection of alpha particles with commercially available transistors. Rev. Sci. Instr.31, 351 (1960).

    Google Scholar 

  245. Zener, C.: A theory of the electrical breakdown of solid dielectrics. Proc. Roy. Soc. (London)145, 523 (1934).

    Google Scholar 

  246. Ziel, A. van der: Fluctuation phenomena in semi-conductors. London: Butterworths Scientific Publications 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer-Verlag OHG

About this paper

Cite this paper

Czulius, W., Dietrich Engler, H., Kuckuck, H. (1962). Halbleiter-Sperrschichtzähler. In: Ergebnisse der Exakten Naturwissenschaften. Ergebnisse der Exakten Naturwissenschaften, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111116

Download citation

  • DOI: https://doi.org/10.1007/BFb0111116

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02808-6

  • Online ISBN: 978-3-540-37056-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics