Skip to main content

Conformational behavior of nonionic surfactants in the organized phases studied by vibrational spectroscopy

  • Organized Structures and Dynamics
  • Conference paper
  • First Online:
Formation and Dynamics of Self-Organized Structures in Surfactants and Polymer Solutions

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 106))

  • 75 Accesses

Abstract

Conformational behavior of the alkyl chain in α-dodecyl-ω-hydroxytris(oxyethylene) (C12E3) in the aqueous organized phases has been studied by a newly developed technique of C-D stretching vibrational spectroscopy. This method is based on the fact that the wavenumbers of the isolated C-D stretching vibrations are sensitive to the conformation in the vicinity of the C-D bond. The C-D stretching infrared spectra of five selectively monodeuterated species of C12E3 in the lamellar (Lα) and isotropic solution (L2) phases were analyzed and the fractions of the trans conformation around the dodecyl C-C bonds and the oxyethylene-adjoining O-C bond and the fractions of the consecutive trans conformations around the two adjoining bonds were evaluated. The conformational change at the phase transition from L2 to Lα is not significant and only a small increase in the trans fraction is observed for the C-C bonds close to the alkyl/oxyethylene interface, implying that the conformational states of the alkyl chain in the L2 and Lα phases in the vicinity of their boundary are substantially not different. In the Lα phase, when the composition or the temperature approaches the region of the phase separation or transition, the trans fractions for the C-C bonds closer to the alkyl/oxyethylene interface and those closer to the chain terminal decrease. These observations indicate that the conformational transformation from trans to gauche at these chain positions makes the lamellar structure less stable and leads eventually to the structural destruction. The conformational order as evaluated from the fractions of the consecutive trans conformation is the highest in the middle of the chain in the Lα and L2 phases. This vibrational spectroscopic observation, together with the previous NMR observations, indicates that the alkyl/oxyethylene interface is flexible with respect to the conformation and the orientation of the chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanford C (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed. Wiley, New York

    Google Scholar 

  2. Degiorgio V, Corti M (eds) (1985) Physics of Amphiphiles: Micelles, Vesicles and Microemulsions. North-Holland, Amsterdam

    Google Scholar 

  3. Tiddy GJT (1985) In: Eicke HF (ed) Modern Trends of Colloid Science in Chemistry and Biology. Birkhäuser, Basel, pp 148–183

    Google Scholar 

  4. Mitchell DJ, Tiddy GJT, Waring L, Bostock T, McDonald MP (1983) J Chem Soc Faraday Trans 1 79:975–1000

    Article  CAS  Google Scholar 

  5. Degiorgio V (1985) In: Degiorgio V, Corti M (eds) Physics of Amphiphiles: Micelles, Vesicles and Microemulsions. North-Holland, Amsterdam, pp 303–335

    Google Scholar 

  6. Tiddy GJT (1980) Phys Rep 57:1–46

    Article  CAS  Google Scholar 

  7. Gruen DWR (1985) Progr Colloid Polym Sci 70:6–16

    Article  CAS  Google Scholar 

  8. Ben-Shaul A, Gelbart WM (1985) Annu Rev Phys Chem 36:179–211

    Article  CAS  Google Scholar 

  9. Painter PC, Coleman MM, Koenig JL (1982) The Theory of Vibrational Spectroscopy and Its Application to Polymeric Materials. Wiley, New York

    Google Scholar 

  10. Matsuura H, Fukuhara K (1987) J Phys Chem 91:6139–6148

    Article  CAS  Google Scholar 

  11. Matsuura H, Fukuhara K, Masatoki S, Sakakibara M (1991) J Am Chem Soc 113:1193–1202

    Article  CAS  Google Scholar 

  12. Matsuura H (1991) Trends Phys Chem 1:89–109

    Google Scholar 

  13. Masatoki S, Fukuhara K, Matsuura H (1993) J Chem Soc Faraday Trans 89:4079–4084

    Article  CAS  Google Scholar 

  14. Kalyanasundaram K, Thomas JK (1976) J Phys Chem 80:1462–1473

    Article  CAS  Google Scholar 

  15. Cooney RP, Barraclough CG. Healy TW (1983) J Phys Chem 87:1868–1873

    Article  CAS  Google Scholar 

  16. Gaufrès R, Bribes JL, Sportouch S, Ammour J, Maillols J (1988) J Raman Spectrosc 19:149–153

    Article  Google Scholar 

  17. Gaufrés R, Sportouch S, Ammour JE, Maillols J (1990) J Phys Chem 94:4635–4639

    Article  Google Scholar 

  18. Matsuura H, Fukuhara K, Takashima K, Sakakibara M (1991) J Phys Chem 95:10800–10810

    Article  CAS  Google Scholar 

  19. Nickolov ZS, Earnshaw JC (1995) J Mol Struct 348:273–276

    Article  CAS  Google Scholar 

  20. Masatoki S, Ohno K, Yoshida H, Matsuura H (1996) J Phys Chem 100:8487–8498

    Article  CAS  Google Scholar 

  21. Ohno K, Takagi Y, Matsuura H (1993) J Phys Chem 97:5530–5534

    Article  CAS  Google Scholar 

  22. Ohno K, Abe H, Masatoki S, Yoshida H, Matsuura H (1996) J Phys Chem 100:12674–12679

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Head-Gordon M, Gill PMW, Wong MW, Foresman JB, Johnson BG, Schlegel HB, Robb MA, Replogle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez C, Martin RL, Fox DJ, Defrees DJ, Baker J, Stewart JJP, Pople JA (1992) GAUSSIAN 92, Revision F.3. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  24. Flory PJ (1989) Statistical Mechanics of Chain Molecules. Hanser, Munich

    Google Scholar 

  25. Carvell M, Hall DG, Lyle IG, Tiddy GJT (1986) Faraday Discuss Chem Soc 81:223–237

    Article  CAS  Google Scholar 

  26. Ward AJI, Ku H, Phillippi MA, Marie C (1988) Mol Cryst Liq Cryst 154:55–60

    Article  CAS  Google Scholar 

  27. Schnepp W, Schmidt C (1993) Ber Bunsen-Ges Phys Chem 97:1399–1402

    CAS  Google Scholar 

  28. Ahlnäs T, Karlström G, Lindman B (1987) J Phys Chem 91:4030–4036

    Article  Google Scholar 

  29. Mely B, Charvolin J, Keller P (1975) Chem Phys Lipids 15:161–173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Kawasaki B. Lindman H. Okabayashi

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Steinkopff Verlag

About this paper

Cite this paper

Matsuur, H. (1997). Conformational behavior of nonionic surfactants in the organized phases studied by vibrational spectroscopy. In: Kawasaki, K., Lindman, B., Okabayashi, H. (eds) Formation and Dynamics of Self-Organized Structures in Surfactants and Polymer Solutions. Progress in Colloid & Polymer Science, vol 106. Steinkopff. https://doi.org/10.1007/BFb0111026

Download citation

  • DOI: https://doi.org/10.1007/BFb0111026

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1096-8

  • Online ISBN: 978-3-7985-1659-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics