Skip to main content

Multi-speckle autocorrelation spectroscopy — a new strategy to monitor ultraslow dynamics in dense and nonergodic media

  • Conference paper
  • First Online:
Book cover Optical Methods and Physics of Colloidal Dispersions

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 104))

Abstract

We present a modification of the conventional dynamic light scattering set-up which allows to monitor the intensity fluctuations of many independent spatial Fourier components of the density fluctuations, i.e. “speckles”, simultaneously by using a charge-coupled device (CCD) camera as area detector. By averaging over the intensity autocorrelation function the final 10–20% decay of the intermediate scattering function in very dense colloidal dispersions is obtained with much higher accuracy. At the same time this multi-speckle autocorrelation spectroscopy provides an alternative route for constructing ensemble-averaged intermediate scattering functions in nonergodic media by replacing the average over many independent sample volumes by an average over independent spatial Fourier components of the density fluctuations. We will survey the methods proposed so far to generate ensemble averages in nonergodic media and discuss their merits and limits. We then demonstrate the advantages of the new technique, taking as an example a colloidal dispersion where in the glassy state long-lived density fluctuations superimpose on the frozen ones. Finally, we make a direct comparison with another “speckle-averaging” technique, the “interleaved sampling” method, which has been proposed and applied to the same system recently [J. Müller, T. Palberg, Progr. Coll. Polym. Sci. (1996) 100:121–126].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berne BJ, Pecora R (1976) Dynamic Light Scattering. Wiley, New York

    Google Scholar 

  2. Chu B (1991) Laser Light Scattering. Basic Principles and Practice. Academic Press, New York

    Google Scholar 

  3. Schmitz KS (1990) An Introduction to Dynamic Light Scattering by Macromolecules. Academic Press, New York

    Google Scholar 

  4. Pusey PN (1991) In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, Freezing and the Glass Transition. North-Holland, Amsterdam, p 765

    Google Scholar 

  5. Segrè PN, Meeker SP, Pusey PN, Poon WCK (1995) Phys Rev Lett 75:958

    Article  Google Scholar 

  6. van Megen W, Underwood SM (1993) Phys Rev E 47:248

    Article  Google Scholar 

  7. van Megen W, Underwood SM (1994) Phys Rev E 49:4206

    Article  Google Scholar 

  8. van Megen W (1995) In: Yip S (ed) Relaxation Kinetics in Supercooled Liquids — Mode Coupling Theory and its Experimental Tests, Transp Theory Stat Phys 24:1017

    Google Scholar 

  9. Bartsch E, Frenz V, Sillescu H (1994) J Non-Crystal Solids 172–174:88

    Article  Google Scholar 

  10. Bartsch E, Frenz V, Baschnagel J, Schärtl W, Sillescu H (1997) J Chem Phys 106:3743

    Article  CAS  Google Scholar 

  11. Bartsch E (1995) In: Yip S (ed) Relaxation Kinetics in Supercooled Liquids — Mode Coupling Theory and its Experimental Tests, Transp Theory Stat Phys 24:1125

    Google Scholar 

  12. Pusey PN, van Megen W (1989) Physica A 157:705

    Article  CAS  Google Scholar 

  13. Pusey PN, van Megen W (1987) Phys Rev Lett 59:2083

    Article  CAS  Google Scholar 

  14. Xue J-Z, Pine DJ, Milner ST, Wu X-L, Chaikin PM (1992) Phys Rev A 46:6550–6563

    Article  CAS  Google Scholar 

  15. Müller J, Palberg T (1996) Progr Colloid Polym Sci 100:121–126

    Google Scholar 

  16. Kirsch S, Frenz V, Schärtl W, Bartsch E, Sillescu H (1996) J Chem Phys 104:1758

    Article  CAS  Google Scholar 

  17. Renth F, Bartsch E, Kasper A, Kirsch S, Stölken S, Sillescu H, Köhler W, Schäfer R (1996) Prog Colloid Polym Sci 100:127–131

    Article  CAS  Google Scholar 

  18. Ricka J (1993) Appl Opt 32:2860

    Article  Google Scholar 

  19. Joosten JGH, Gelade ETF, Pusey PN (1990) Phys Rev A 42:2161

    Article  CAS  Google Scholar 

  20. van Megen W, private communication

    Google Scholar 

  21. Joosten JGH, McCarthy JL, Pusey PN (1991) Macromol 24:6690

    Article  CAS  Google Scholar 

  22. Schätzel K, Drewel M, Ahrens J (1990) J Phys: Condens Matter 2:SA393

    Article  Google Scholar 

  23. Segrè PN, van Megen W, Pusey PN, Schätzel K, Peters W (1995) J Mod Opt 42:1929

    Article  Google Scholar 

  24. Schätzel K (1987) Appl Phys B 32:193

    Article  Google Scholar 

  25. Note that the weighing factor 〈I(Q) T,j /〈I(Q) E , even though applied, was erroneously omitted in Eq. (3b) of Ref. [16])

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. Palberg M. Ballauff

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Steinkopff Verlag

About this paper

Cite this paper

Bartsch, E., Frenz, V., Kirsch, S., Schärtl, W., Sillescu, H. (1997). Multi-speckle autocorrelation spectroscopy — a new strategy to monitor ultraslow dynamics in dense and nonergodic media. In: Palberg, T., Ballauff, M. (eds) Optical Methods and Physics of Colloidal Dispersions. Progress in Colloid & Polymer Science, vol 104. Steinkopff. https://doi.org/10.1007/BFb0110743

Download citation

  • DOI: https://doi.org/10.1007/BFb0110743

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1085-2

  • Online ISBN: 978-3-7985-1661-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics