Skip to main content

Generalized quadratic lyapunov functions for nonlinear/uncertain systems analysis

  • Conference paper
  • First Online:
Perspectives in robust control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 268))

  • 339 Accesses

Abstract

We consider the class of discrete-time nonlinear/uncertain systems described by the feedback connection of a linear time-invariant system and a “troublesome component,” i.e. either a static nonlinearity or a time-varying parametric uncertainty. We propose a generalized quadratic Lyapunov function for stability analysis of such systems. In particular, the Lyapunov function is given by a quadratic form of a vector that depends on the state in a specific nonlinear manner. Introducing a quadratic-form model of the troublesome component in the spirit of integral quadratic constraints, we obtain sufficient conditions for the existence of such Lyapunov functions that proves global/regional stability. The conditions are given in terms of linear matrix inequalities that can be numerically verified in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barmish, B. R. (1985) Necessary and sufficient conditions for quadratic stabilizability of an uncertain linear system. J. Optimiz. Theory Appl., 46-4

    Google Scholar 

  2. Boyd, S., Yang, Q. (1989) Structured and simultaneous Lyapunov functions for system stability problems. Int. J. Contr., 49-6, 2215–2240

    Article  MathSciNet  Google Scholar 

  3. Boyd, S. P., El Ghaoui, L. et al. (1994) Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics

    Google Scholar 

  4. Chu, Y.-C., Glover, K. (1999) Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities. IEEE Trans. Auto. Contr., 44-3, 471–483

    MathSciNet  Google Scholar 

  5. D’Amato, F., Megretski, A. et al. (1999) Integral quadratic constraints for monotonic and slope-restricted diagonal operators. Proc. American Contr. Conf., 2375–2379

    Google Scholar 

  6. Dasgupta, S., Chockalingam, G., et al. (1994) Lyapunov functions for uncertain systems with applications to the stability of time varying systems. IEEE Trans. Circ. Syst., 41, 93–106

    Article  MATH  MathSciNet  Google Scholar 

  7. Doyle, J. C. (1982) Analysis of feedback systems with structured uncertainties. IEE Proc., 129, Part D(6), 242–250

    MathSciNet  Google Scholar 

  8. Doyle, J. C., Packard, A., et al. (1991) Review of LFTs, LMIs, and μ. Proc. IEEE Conf. Decision Contr., 1227–1232

    Google Scholar 

  9. Feron, E., Apkarian, P., et al. (1996) Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Trans. Automat. Contr., 41-7, 1041–1046

    Article  MathSciNet  Google Scholar 

  10. Gahinet, P., Apkarian, P., et al. (1996) Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Trans. Auto. Contr., 41-3, 436–442

    Article  MathSciNet  Google Scholar 

  11. Geromel, J. C., Peres, P. L. D., et al. (1991) On a convex parameter space method for linear control design of uncertain systems. SIAM J. Contr. Opt., 29-2, 381–402

    Article  MathSciNet  Google Scholar 

  12. El Ghaoui, L., Niculescu, S.-I., editors. (2000) Advances in Linear Matrix Inequality Methods in Control. SIAM Advances in Design and Control

    Google Scholar 

  13. Haddad, W. M., Bernstein, D. S. (1991) Parameter-dependent Lyapunov functions, constant real parameter uncertainty, and the Popov criterion in robust analysis and synthesis. Proc. IEEE Conf. Decision Contr., 2274–2279, 2632–2633

    Google Scholar 

  14. Haddad, W. M., Bernstein, D. S. (1994) Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and Popov theorems and their application to robust stability. Part II: Discrete-time theory. Int. J. Robust Nonlin. Contr., 4, 249–265

    Article  MATH  MathSciNet  Google Scholar 

  15. Hindi, H., Boyd, S. (1998) Analysis of linear systems with saturation using convex optimization. Proc. IEEE Conf. Decision Contr., 903–908

    Google Scholar 

  16. Isidori, A. (1989) Nonlinear Control Systems. Springer-Verlag

    Google Scholar 

  17. Iwasaki, T., Hara, S. (1998) Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations. IEEE Trans. Auto. Contr., 43-5, 619–630

    Article  MathSciNet  Google Scholar 

  18. Iwasaki, T., Meinsma, G., et al. (2000) Generalized S-procedure and finite frequency KYP lemma. Mathematical Problems in Engineering, 6, 305–320

    Article  MATH  MathSciNet  Google Scholar 

  19. Iwasaki, T., Shibata, G. (1998) LPV system analysis via quadratic separator for uncertain implicit systems. Submitted for publication.

    Google Scholar 

  20. Iwasaki, T., Shibata, G. (1999) LPV system analysis via quadratic separator for uncertain implicit systems. Proc. IEEE Conf. Decision Contr., 287–292

    Google Scholar 

  21. Kokotović, P. V. (1992) The joy of feedback: nonlinear and adaptive. IEEE Control Systems, 12, 7–17

    Article  Google Scholar 

  22. Leitmann, G. (1979) Guaranteed asymptotic stability for some linear systems with bounded uncertainties. J. Dyn. Sys., Meas. Contr., 101, 202–216

    MathSciNet  Google Scholar 

  23. Liu, D., Michel, A. (1994) Dynamical Systems with Saturation Nonlinearities: Analysis and Design. volume 195, Lecture Notes in Control and Information Sciences, Springer-Verlag

    Google Scholar 

  24. Lur’e, A. I. (1957) Some Nonlinear Problems in the Theory of Automatic Control. H. M. Stationery Off.

    Google Scholar 

  25. Megretski, A., Rantzer, A. (1997) System analysis via integral quadratic constraints. IEEE Trans. Auto. Contr., 42-6, 819–830

    Article  MathSciNet  Google Scholar 

  26. Nesterov, Yu, Nemirovsky, A. (1994) Interior-point Polynomial Methods in Convex Programming. SIAM Studies in Applied Mathematics

    Google Scholar 

  27. Packard, A., Doyle, J. (1993) The complex structured singular value. Automatica, 29-1, 71–109

    Article  MathSciNet  Google Scholar 

  28. Pittet, C., Tarbouriech, S., et al. (1997) Stability regions for linear systems with saturating controls via circle and Popov criteria. Proc. IEEE Conf. Decision Contr., 4518–4523

    Google Scholar 

  29. Rantzer, A. (1996) On the Kalman-Yakubovich-Popov lemma. Sys. Contr. Lett., 28-1, 7–10

    Article  MathSciNet  Google Scholar 

  30. Saberi, A., Lin, Z., et al. (1996) Control of linear systems with saturating actuators. IEEE Trans. Auto. Contr., 41-3, 368–378

    Article  MathSciNet  Google Scholar 

  31. Safonov, M. G., Athans, M. (1981) A multiloop generalization of the circle criterion for stability margin analysis. IEEE Trans. Auto. Contr., 26-2, 415–422

    Article  MathSciNet  Google Scholar 

  32. Scherer, C., Gahinet, P., et al. (1997) Multiobjective output-feedback control via LMI optimization. IEEE Trans. Auto. Contr., 42-7, 896–911

    Article  MathSciNet  Google Scholar 

  33. Trofino, A., de Souza, C. E. (1999) Bi-quadratic stability of uncertain linear systems. Proc. IEEE Conf. Decision Contr.

    Google Scholar 

  34. Yakubovič, V. A. (1971) S-procedure in nonlinear control theory. Vestnik Leningrad Univ., 1, 62–77

    Google Scholar 

  35. Zames, G. (1966) On the input-output stability of time-varying nonlinear feedback systems, Part I: Conditions using concepts of loop gain, conicity, and positivity. IEEE Trans. Auto. Contr., 11, 228–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S.O. Reza Moheimani BSc, MengSc, PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Iwasaki, T. (2001). Generalized quadratic lyapunov functions for nonlinear/uncertain systems analysis. In: Moheimani, S.R. (eds) Perspectives in robust control. Lecture Notes in Control and Information Sciences, vol 268. Springer, London. https://doi.org/10.1007/BFb0110619

Download citation

  • DOI: https://doi.org/10.1007/BFb0110619

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-452-9

  • Online ISBN: 978-1-84628-576-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics