Skip to main content

Iterative model based H2/H synthesis for active suspension system

  • Part II Control System Design
  • Conference paper
  • First Online:
Progress in system and robot analysis and control design

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 243))

  • 1969 Accesses

Abstract

This paper has developed an iterative model-based mixed H2/H controller design method. This method cretes excellent disturbance rejection because of the H2 criterion, and a good performance and stability margin because of the H criterion. In this paper, the design of the active suspension system has been attempted, where the main objective is to minimize the harmful vibration of the vehicle body caused by road irregularities. The purpose of the mixed performance criteria is to combine the traditional quadratic form with the H norm of the body acceleration. The aim of this example has been to illustrate the fact that, if the design is performed on a nominal model in which the parameters are not exactly known, the iterative design is an important tool for practicing engineers. The research project is to be continued. In the future, several problems have yet to be investigated such as the convergence property of the iterative scheme, the balance between the H2 and the H, the tune of the parameters γ and the μ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel Hady, M.B.A., D.A. Crolla 1992 Active suspension control algorithms for a four-wheel vehicle model, International Journal of Vehicle Design, 13:144–158.

    Google Scholar 

  2. Anderson, B.D.O., R.L. Kosut 1991 Adaptive robust control: On-line learning, Proc. of the Conf. on Decision and Control, Brighton, 297–298

    Google Scholar 

  3. Bernstein, D.S., W.M. Haddad 1989 LQG Control with an H performance bound, IEEE Trans. on Automatic Control, 34:293–305

    Article  MATH  MathSciNet  Google Scholar 

  4. Crolla, D.A., M.B.A. Abdel Hady 1991 Active Suspension Control; Performance Comparisons Using Control Laws Applied to a Full Vehicle Model, Vehicle System Dynamics, 20:107–120

    Article  Google Scholar 

  5. Doyle, J.C. 1978 Guaranteed margins for LQG regulators, IEEE Trans. on Automatic Control, 23:756–757

    Article  Google Scholar 

  6. Doyle, J., Zhou, K., K. Glover, B. Bodenheimer 1994 Mixed H2 and H performance objectives. II. Optimal control, IEEE Trans. on Automatic Control, 39:1575–1587

    Article  MATH  MathSciNet  Google Scholar 

  7. Doyle, J., K. Glover, P.P. Khargonekar, B. A. Francis 1989 State space solutions to standard H2 and H control problems, IEEE Trans. on Automatic Control, 34:831–846

    Article  MATH  MathSciNet  Google Scholar 

  8. Gáspár, P., J. Bokor 1997 Multivariable weighted LQG control design in the iterative Zang scheme, Proc. of the European Control Conf., Brussels, 11.4

    Google Scholar 

  9. Gevers, M. 1993 Towards a joint design identification and control? In: H.L. Trentelman, J.C. Willems (eds) 1993 Essays on Control: Perspectives in the Theory and Its Applications, Birkhauser, Boston, 111–151

    Google Scholar 

  10. Gevers, M., L. Ljung, P. Van den Hof 1997 Asymptotic variance expressions for closed-loop identification and their relevance in identification for control, Proc. of the 11 th IFAC Symp. on System Identification, Kitakyushu, 3:1449–1454

    Google Scholar 

  11. Hrovat, D. 1990 Optimal active suspension structures for quarter car vehicle models, Automatica, 26:845–860

    Article  Google Scholar 

  12. Krtolica, R., D. Hrovat 1990 Optimal active suspesion control based on a half-car model, Proc. American Control Conf., Honolulu, 2238–2243

    Google Scholar 

  13. Michelberger, P., J. Bokor, L. Palkovics, E. Nándori, P. Gáspár 1997 Iterative identification and control design for uncertain parameter suspension system, 8th IFAC Symp. on Transportation Systems, 2:464–469

    Google Scholar 

  14. Palkovics, L., P. Gáspár, J. Bokor 1993 Design of active suspension system in the presence of physical parameter uncertainties, Proc. American Control Conf., San Francisco, 1:696–700

    Google Scholar 

  15. Sharp, R.S., D.A. Crolla 1987 Road Vehicle Suspension System Design — a review, Vehicle System Dynamics, 16:167–192

    Article  Google Scholar 

  16. Sharp, R.S., S.A. Hassan 1986 An Evaluation of Passive Automotive Suspension Systems with Variable Stiffness and Damping Parameters, Vehicle System Dynamics, 15:335–350

    Article  Google Scholar 

  17. Skelton, R.E. 1989 Model error concepts in control design, International Journal of Control, 49:1725–1753

    Article  MATH  MathSciNet  Google Scholar 

  18. Steinbuch, M., O.H. Bosgra 1991 Necessary conditions for static and fixed order dynamic mixed H2/H optimal control, Proc. of the American Control Conf., 1137–1142

    Google Scholar 

  19. Thompson, A.G. 1984 Optimal and suboptimal linear active suspensions for road vehicles, Vehicle System Dynamics, 13:61–72

    Article  Google Scholar 

  20. Thompson, A.G., B.R. Davis 1988 Optimal Linear Active Suspensions with Derivative Constraints and Output Feedback Control, Vehicle System Dynamics, 17:179–192

    Article  Google Scholar 

  21. Yeh, H.H., S.S. Banda, B.C. Chang 1992 Necessary and sufficient conditions for mixed H2 and H optimal control, IEEE Trans. on Automatic Control, 37:355–358

    Article  MathSciNet  Google Scholar 

  22. Yeh, H.H., S.S. Banda, A.G. Sparks, D.B. Ridgely 1992 Loop shaping in mixed H2 and H control, Int. J. Control, 56:1059–1078

    Article  MATH  MathSciNet  Google Scholar 

  23. Van den Hof, P.M.J., R.J.P. Schrama 1994 Identification and control-closed loop issues, Proc. of the 10 th IFAC Symp. on System Identification, Copenhagen, 2:1–13

    Google Scholar 

  24. Van den Hof, P.M.J., R.J.P. Schrama 1992 An indirect method for transfer function estimation from closed loop data, Proc. of the 31st Conf. on Decision and Control, Tucson, 1702–1706

    Google Scholar 

  25. Van den Hof, P.M.J., R.J.P. Schrama, O.H. Bosgra, R.A. Callafon 1993 Identification of normalized coprime plant factors for iterative model and controller enhancement, Proc. of the 32nd Conf. on Decision and Control, San Antonio, 2839–2844

    Google Scholar 

  26. Yamashita, M., K. Fujimori, K. Hayakawa, H. Kimura 1994 Application of H control to active suspension system Automatica, 30:1717–1729

    Article  Google Scholar 

  27. Zang, Z., R.R. Bitmead, M. Gevers 1995 Iterative weighted least-squares identification and weighted LQG control design, Automatica, 31:1577–1594

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhou, K., K. Glover, B. Bodenheimer, J. Doyle 1994 Mixed H2 and H performance objectives. I. Robust performance analysis, IEEE Trans. on Automatic Control, 39:1564–1574

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

S. G. Tzafestas PhD G. Schmidt PhD

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Gáspar, P., Bokor, J. (1999). Iterative model based H2/H synthesis for active suspension system. In: Tzafestas, S.G., Schmidt, G. (eds) Progress in system and robot analysis and control design. Lecture Notes in Control and Information Sciences, vol 243. Springer, London. https://doi.org/10.1007/BFb0110546

Download citation

  • DOI: https://doi.org/10.1007/BFb0110546

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-123-8

  • Online ISBN: 978-1-84628-535-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics