Skip to main content

Network modelling of physical systems: a geometric approach

  • Part IV Physics In Control
  • Conference paper
  • First Online:
Advances in the control of nonlinear systems

Abstract

It is discussed how network modeling of lumped-parameter physical systems naturally leads to a geometrically defined class of systems, called port-controlled Hamiltonian systems (with dissipation). The structural properties of these systems are investigated, in particular the existence of Casimir functions and their implications for stability. It is shown how the power-conserving interconnection with a controller system which is also a port-controlled Hamiltonian system defines a closed-loop port-controlled Hamiltonian system; and how this may be used for control by shaping the internal energy. Finally, extensions to implicit system descriptions (constraints, no a priori input-output structure) are discussed.

This paper is an adapted and expanded version of [33]. Part of this material can be also found in [32].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Bloch & P.E. Crouch, “Representations of Dirac structures on vector spaces and nonlinear LC circuits”, Proc. Symposia in Pure Mathematics, Differential Geometry and Control Theory, G. Ferreyra, R. Gardner, H. Hermes, H. Sussmann, eds., Vol. 64, pp. 103–117, AMS, 1999.

    Google Scholar 

  2. A. Bloch, N. Leonard & J.E. Marsden, “Matching and stabilization by the method of controlled Lagrangians”, in Proc. 37th IEEE Conf. on Decision and Control, Tampa, FL, pp. 1446–1451, 1998.

    Google Scholar 

  3. P.C. Breedveld, Physical systems theory in terms of bond graphs, PhD thesis, University of Twente, Faculty of Electrical Engineering, 1984

    Google Scholar 

  4. R.W. Brockett, “Control theory and analytical mechanics”, in Geometric Control Theory, (eds. C. Martin, R. Hermann), Vol. VII of Lie Groups: History, Frontiers and Applications, Math. Sci. Press, Brookline, pp. 1–46, 1977.

    Google Scholar 

  5. T.J. Courant, “Dirac manifolds”, Trans. American Math. Soc., 319, pp. 631–661, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  6. P.E. Crouch & A.J. van der Schaft, Variational and Hamiltonian Control Systems, Lect. Notes in Control and Inf. Sciences 101, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  7. M. Dalsmo & A.J. van der Schaft, “On representations and integrability of mathematical structures in energy-conserving physical systems”, SIAM J. Control and Optimization, 37, pp. 54–91, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley, Chichester, 1993.

    Google Scholar 

  9. G. Escobar, A.J. van der Schaft & R. Ortega, “A Hamiltonian viewpoint in the modelling of switching power converters”, Automatica, Special Issue on Hybrid Systems, 35, pp. 445–452, 1999.

    Article  MATH  Google Scholar 

  10. K. Fujimoto, T. Sugie, “Stabilization of a class of Hamiltonian systems with nonholonomic constraints via canonical transformations”, Proc. European Control Conference’ 99, Karlsruhe, 31 August — 3 September 1999.

    Google Scholar 

  11. D.J. Hill & P.J. Moylan, “Stability of nonlinear dissipative systems,” IEEE Trans. Aut. Contr., AC-21, pp. 708–711, 1976.

    Article  MathSciNet  Google Scholar 

  12. A. Isidori, Nonlinear Control Systems (2nd Edition), Communications and Control Engineering Series, Springer-Verlag, London, 1989, 3rd Edition, 1995.

    MATH  Google Scholar 

  13. R. Lozano, B. Brogliato, O. Egeland and B. Maschke, Dissipative systems, Communication and Control Engineering series, Springer, London, March 2000.

    MATH  Google Scholar 

  14. J.E. Marsden & T.S. Ratiu, Introduction to Mechanics and Symmetry, Texts in Applied Mathematics 17, Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  15. B.M. Maschke, Interconnection and structure of controlled Hamiltonian systems: a network approach, (in French), Habilitation Thesis, No.345, Dec. 10, 1998, University of Paris-Sud, Orsay, France.

    Google Scholar 

  16. B.M. Maschke, A.J. van der Schaft, “An intrinsic Hamiltonian formulation of network dynamics: non-standard Poisson structures and gyrators”, J. Franklin Institute, vol. 329, no.5, pp. 923–966, 1992.

    Article  MATH  Google Scholar 

  17. B.M. Maschke, A.J. van der Schaft, “Port controlled Hamiltonian representation of distributed parameter systems”, Proc. IFAC Workshop on Lagrangian and Hamiltonian methods for nonlinear control, Princeton University, March 16–18, pp. 28–38, 2000.

    Google Scholar 

  18. B.M. Maschke, C. Bidard & A.J. van der Schaft, “Screw-vector bond graphs for the kinestatic and dynamic modeling of multibody systems”, in Proc. ASME Int. Mech. Engg. Congress, 55-2, Chicago, U.S.A., pp. 637–644, 1994.

    Google Scholar 

  19. B.M. Maschke, R. Ortega & A.J. van der Schaft, “Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation”, in Proc. 37th IEEE Conference on Decision and Control, Tampa, FL, pp. 3599–3604, 1998.

    Google Scholar 

  20. B.M. Maschke, R. Ortega, A.J. van der Schaft & G. Escobar, “An energy-based derivation of Lyapunov functions for forced systems with application to stabilizing control”, in Proc. 14th IFAC World Congress, Beijing, Vol. E, pp. 409–414, 1999.

    Google Scholar 

  21. B.M. Maschke & A.J. van der Schaft, “Port-controlled Hamiltonian systems: Modelling origins and system-theoretic properties”, in Proc. 2nd IFAC NOLCOS, Bordeaux, pp. 282–288, 1992.

    Google Scholar 

  22. B.M. Maschke, A.J. van der Schaft & P.C. Breedveld, “An intrinsic Hamiltonian formulation of the dynamics of LC-circuits, IEEE Trans. Circ. and Syst., CAS-42, pp. 73–82, 1995.

    Article  Google Scholar 

  23. B.M. Maschke & A.J. van der Schaft, “Interconnected Mechanical Systems, Part II: The Dynamics of Spatial Mechanical Networks”, in Modelling and Control of Mechanical Systems, (eds. A. Astolfi, D.J.N. Limebeer, C. Melchiorri, A. Tornambe, R.B. Vinter), pp. 17–30, Imperial College Press, London, 1997.

    Google Scholar 

  24. J.I. Neimark & N.A. Fufaev, Dynamics of Nonholonomic Systems, Vol. 33 of Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 1972.

    MATH  Google Scholar 

  25. H. Nijmeijer & A.J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  26. R. Ortega, A. Loria, P.J. Nicklasson & H. Sira-Ramirez, Passivity-based Control of Euler-Lagrange Systems, Springer-Verlag, London, 1998.

    Google Scholar 

  27. R. Ortega, A.J. van der Schaft, B.M. Maschke & G. Escobar, “Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems”, 1999, submitted for publication.

    Google Scholar 

  28. H. M. Paynter, Analysis and design of engineering systems, M.I.T. Press, MA, 1960.

    Google Scholar 

  29. A.J. van der Schaft, System theoretic properties of physical systems, CWI Tract 3, CWI, Amsterdam, 1984.

    Google Scholar 

  30. A.J. van der Schaft, “Stabilization of Hamiltonian systems”, Nonl. An. Th. Math. Appl., 10, pp. 1021–1035, 1986.

    Article  MATH  Google Scholar 

  31. A.J. van der Schaft, “Interconnection and geometry”, in The Mathematics of Systems and Control, From Intelligent Control to Behavioral Systems (eds. J.W. Polderman, H.L. Trentelman), Groningen, 1999.

    Google Scholar 

  32. A.J. van der Schaft, L 2-Gain and Passivity Techniques in Nonlinear Control, 2nd revised and enlarged edition, Springer-Verlag, Springer Communications and Control Engineering series, p. xvi+249, London, 2000 (first edition Lect. Notes in Control and Inf. Sciences, vol. 218, Springer-Verlag, Berlin, 1996).

    Google Scholar 

  33. A.J. van der Schaft, “Port-controlled Hamiltonian systems: Towards a theory for control and design of nonlinear physical systems”, J. of the Society of Instrument and Control Engineers of Japan (SICE), vol. 39, no.2, pp. 91–98, 2000.

    Google Scholar 

  34. A.J. van der Schaft & B.M. Maschke, “On the Hamiltonian formulation of nonholonomic mechanical systems”, Rep. Math. Phys., 34, pp. 225–233, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  35. A.J. van der Schaft & B.M. Maschke, “The Hamiltonian formulation of energy conserving physical systems with external ports”, Archiv für Elektronik und Übertragungstechnik, 49, pp. 362–371, 1995.

    Google Scholar 

  36. A.J. van der Schaft & B.M. Maschke, “Interconnected Mechanical Systems, Part I: Geometry of Interconnection and implicit Hamiltonian Systems”, in Modelling and Control of Mechanical Systems, (eds. A. Astolfi, D.J.N. Limebeer, C. Melchiorri, A. Tornambe, R.B. Vinter), pp. 1–15, Imperial College Press, London, 1997.

    Google Scholar 

  37. K. Schlacher, A. Kugi, “Control of mechanical structures by piezoelectric actuators and sensors”. In Stability and Stabilization of Nonlinear Systems, eds. D. Aeyels, F. Lamnabhi-Lagarrigue, A.J. van der Schaft, Lecture Notes in Control and Information Sciences, vol. 246, pp. 275–292, Springer-Verlag, London, 1999.

    Google Scholar 

  38. S. Stramigioli, From Differentiable Manifolds to Interactive Robot Control, PhD Dissertation, University of Delft, Dec. 1998.

    Google Scholar 

  39. S. Stramigioli, B.M. Maschke & A.J. van der Schaft, “Passive output feedback and port interconnection”, in Proc. 4th IFAC NOLCOS, Enschede, pp. 613–618, 1998.

    Google Scholar 

  40. S. Stramigioli, B.M. Maschke, C. Bidard, “A Hamiltonian formulation of the dynamics of spatial mechanism using Lie groups and screw theory”, to appear in Proc. Symposium Commemorating the Legacy, Work and Life of Sir R.S. Ball, J. Duffy and H. Lipkin organizers, July 9–11, 2000, University of Cambridge, Trinity College, Cambridge, U.K.

    Google Scholar 

  41. S. Stramigioli, A.J. van der Schaft, B. Maschke, S. Andreotti, C. Melchiorri, “Geometric scattering in tele-manipulation of port controlled Hamiltonian systems”, 39th IEEE Conf. Decision & Control, Sydney, 2000.

    Google Scholar 

  42. M. Takegaki & S. Arimoto, “A new feedback method for dynamic control of manipulators”, Trans. ASME, J. Dyn. Systems, Meas. Control, 103, pp. 119–125, 1981.

    Article  MATH  Google Scholar 

  43. J.C. Willems, “Dissipative dynamical systems — Part I: General Theory”, Archive for Rational Mechanics and Analysis, 45, pp. 321–351, 1972.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfonso Baños PhD Françoise Lamnabhi-Lagarrigue (Docteur D’état)Francisco J. Montoya PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

van der Schaft, A., Maschke, B., Ortega, R. (2001). Network modelling of physical systems: a geometric approach. In: Baños, A., Lamnabhi-Lagarrigue, F., Montoya, F.J. (eds) Advances in the control of nonlinear systems. Lecture Notes in Control and Information Sciences, vol 264. Springer, London. https://doi.org/10.1007/BFb0110387

Download citation

  • DOI: https://doi.org/10.1007/BFb0110387

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-378-2

  • Online ISBN: 978-1-84628-570-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics