Skip to main content

Singular systems in dimension 3: Cuspidal case and tangent elliptic flat case

  • Conference paper
  • First Online:
Nonlinear control in the year 2000 volume 2

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 259))

Abstract

We study two singular systems in R3. The first one is affine in control and we achieve weighted blowings-up to prove that singular trajectories exist and that they are not locally time optimal. The second one is linear in control. The characteristic vector field in sub-Riemannian geometry is generically singular at isolated points in dimension 3. We define a case with symmetries, which we call flat, and we parametrize the sub-Riemannian sphere. This sphere is subanalytic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrachev, A. A. (1999) Compactness for Sub-Riemannian Length-minimizers and Subanalycity. Preprint SISSA

    Google Scholar 

  2. Agrachev, A. A., Gauthier, J. P. (1998), Subriemannian metrics and isoperimetric problems in the contact case. Preprint Université de Bourgogne

    Google Scholar 

  3. Bellaïche, A., (1996) Tangent space in sub-Riemannian geometry. Birkhäuser

    Google Scholar 

  4. Bonnard, B., Kupka, I. (1993) Théorie des singularités de l'application entréesortie et optimalité des trajectoires singulières dans le problème du temps minimal. Forum Mathematicum, 5, 111–159

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonnard, B., Kupka, I. (1997) Generic properties of singular trajectories. Ann. Inst. Henri Poincaré, 14, 167–186

    Article  MATH  MathSciNet  Google Scholar 

  6. Dumortier, F., Roussarie, R. (1999) Geometric singular perturbation theory beyond normal hyperbolicity. Preprint Université de Bourgogne

    Google Scholar 

  7. Hermes, H. (1988) Lie Algebra of Vector Fields and Local Approximation of Attainable Sets, SIAM J. Control and Opt. 26 715–727

    MathSciNet  Google Scholar 

  8. Mardesic, P. (1998) Chebyshev systems and the versal unfolding of the cusp of order n. Hermann

    Google Scholar 

  9. Pelletier, M. (1998) Time optimality of nonsmooth singular trajectories of affine one input systems in R 3. Proceedings of the Pontryagin Conference

    Google Scholar 

  10. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., Mishenko, E. F. (1964) The Mathematical Theory of Optimal Processes. Pergamon Press

    Google Scholar 

  11. Takens, F. (1974) Singularities of Vector Fields. Publ. Math. IHES 43 47–100

    MathSciNet  Google Scholar 

  12. Zhitomirskii, M. (1995) Singularities and normal forms of smooth distributions. Geometry in nonlinear control and differential inclusions, Banach Center publications 32 395–409.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alberto Isidori Françoise Lamnabhi-Lagarrigue Witold Respondek

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Pelletier, M. (2001). Singular systems in dimension 3: Cuspidal case and tangent elliptic flat case. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds) Nonlinear control in the year 2000 volume 2. Lecture Notes in Control and Information Sciences, vol 259. Springer, London. https://doi.org/10.1007/BFb0110302

Download citation

  • DOI: https://doi.org/10.1007/BFb0110302

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-364-5

  • Online ISBN: 978-1-84628-569-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics