Skip to main content

Feedback invariants, critical trajectories and hamiltonian formalism

  • Conference paper
  • First Online:
Nonlinear control in the Year 2000

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 258))

Abstract

We show that the Hamiltonian formalism, as used for optimal control problems, is a natural tool for studying the feedback equivalence problem and for constructing invariants. The most important invariants (covariants) are the critical curves or trajectories of the system, also called extremals or singular curves. They are obtained as the curves satisfying formally the necessary conditions of Pontryagin maximum principle. In particular, we show that for arbitrary scalar control systems the set of critical trajectories (if nonempty), together with a canonical involutive distribution, determine the system in neighbourhood of a regular point, up to feedback equivalence. We describe the structure of critical trajectories around regular points and show that the system can be decomposed into a feedback linearizable part and a fully nonlinear part. A complete set of invariants is given for fully nonlinear analytic systems.

Supported by Polish KBN grant 2P03A 035 16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrachev, A. (1995) Methods of Control Theory in Nonholonomic Geometry, in Proc. Int. Congress of Math., Zurich 1994, 1473–1483, Birkhäuser, Basel.

    Google Scholar 

  2. Anosov, D.V. and Arnold, V.I. (1988) Dynamical Systems I, Encyclopaedia of Mathematical Sciences, Springer Verlag, Heidelberg.

    Google Scholar 

  3. Bonnard, B. (1991) Feedback Equivalence for Nonlinear Systems and the Time Optimal Control Problem, SIAM J. Control and Optimiz. 29, 1300–1321.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonnard, B. (1992) Quadratic Control Systems, Mathematics of Control, Signals, and Systems 4, 139–160.

    Article  MathSciNet  Google Scholar 

  5. Gardner, R. (1989) The Method of Equivalence and Its Applications, CBMS Regional Conference Series in Applied Mathematics, CBMS 58, SIAM.

    Google Scholar 

  6. Isidori, A. (1989) Nonlinear Control Systems; An Introduction, Springer Verlag, New York 1989.

    Google Scholar 

  7. Hunt L.R., Su R. and Meyer G. (1983) Design for Muti-Input Nonlinear Systems, in “Differential Geometric Control Theory”, R. Brockett, R. Millman, H. Sussmann eds. 268–298, Birkhäuser 1983.

    Google Scholar 

  8. Jakubczyk, B. (1990) Equivalence and Invariants of Nonlinear Control Systems, in “Nonlinear Controllability and Optimal Control”, H. J. Sussmann (ed.), 177–218, Marcel Dekker, New York-Basel.

    Google Scholar 

  9. Jakubczyk, B (1992) Microlocal Feedback Invariants, preprint.

    Google Scholar 

  10. Jakubczyk, B. (1998) Critical Hamiltonians and Feedback Invariants, in “Geometry of Feedback and Optimal Control”, B. Jakubczyk and W. Respondek (eds.), 219–256, Marcel Dekker, New York-Basel.

    Google Scholar 

  11. Jakubczyk, B. and Respondek, W. (1980) On linearization of control systems, Bull. Acad. Polon. Sci. Ser. Sci. Math. 28, 517–522.

    MATH  MathSciNet  Google Scholar 

  12. Jakubczyk, B. and Respondek, W. (1991) Feedback Classification of Analytic Control Systems in the Plane, in “Analysis of Controlled Dynamical Systems”, B. Bonnard et al. eds., 263–273, Progress in Systems and Control Theory 8, Birkhäuser, Boston-Basel.

    Google Scholar 

  13. Kang, W. and Krener, A.J. (1992) Extended Quadratic Controller Normal Form and Dynamic Feedback Linearization of Nonlinear Systems, SIAM J. Control and Optimiz. 30, 1319–1337.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kupka, I (1992) On Feedback Equivalence, Canadian Math. Society Conference Proceedings, Vol. 12, 1992, 105–117.

    MathSciNet  Google Scholar 

  15. Kupka, I. (1994) Linear Equivalence of Curves, manuscript.

    Google Scholar 

  16. Marino, R., Boothby, W.M. and Elliott, D.L. (1985) Geometric Properties of Linearizable Control Systems, Math. Systems Theory 18, 97–123.

    Article  MATH  MathSciNet  Google Scholar 

  17. Montgomery, R. (1995) A Survey on Singular Curves in Sub-Riemannian Geometry, Journal of Dynamical and Control Systems 1, 49–90.

    Article  MATH  MathSciNet  Google Scholar 

  18. Nijmeijer H. and van der Schaft A.J. (1990), Nonlinear Dynamical Control Systems, Springer Verlag, New York.

    MATH  Google Scholar 

  19. Respondek W. and Zhitomirskii M. (1996) Feedback classification of Nonlinear Control Systems on 3-Manifolds, Mathematics of Control, Signals, and Systems 8, 299–333.

    Article  MathSciNet  Google Scholar 

  20. Sontag, E. (1990) Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer Verlag, New York.

    MATH  Google Scholar 

  21. Sussmann, H.J. (1974) An Extension of a Theorem of Nagano on Transitive Lie algebras, Proc. Am. Math. Soc. 45, 349–356.

    Article  MATH  MathSciNet  Google Scholar 

  22. Tall, I.A. and Respondek, W. (2000) Transforming Nonlinear Single-Input Control Systems to Normal Forms via Feedback, MTNS-2000.

    Google Scholar 

  23. Zhitomirskii M and Respondek W. (1998) Simple Germs of Corank 1 Affine Distributions, Banach Center Publications 44, Warsaw.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alberto Isidori (Professor)Françoise Lamnabhi-Lagarrigue (Docteur D’état)Witold Respondek (Professor)

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Jakubczyk, B. (2001). Feedback invariants, critical trajectories and hamiltonian formalism. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds) Nonlinear control in the Year 2000. Lecture Notes in Control and Information Sciences, vol 258. Springer, London. https://doi.org/10.1007/BFb0110240

Download citation

  • DOI: https://doi.org/10.1007/BFb0110240

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-363-8

  • Online ISBN: 978-1-84628-568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics