Skip to main content

State feedbacks without asymptotic observers and generalized PID regulators

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 258))

Abstract

For constant linear systems we introduce the class of exact integral observers which yield generalized PID regulators with good robustness properties. When utilized in conjunction with static state feedbacks they permit to bypass classical asymptotic observers. Three illustrative examples are examined:

  1. 1.

    a classical PID controller where we replace the derivative term by appropriate integral ones;

  2. 2.

    a generalized PID for a second order system with a non-trivial zero dynamics;

  3. 3.

    a real DC motor without mechanical sensors.

Our approach, which is mainly of algebraic flavour, is based on the module-theoretic framework for linear systems and on operational calculus in Mikusiński’s setting. We conclude by discussing possible extensions, especially nonlinear ones.

Work partially supported by the European Commission’s Training and Mobility of Researchers (TMR) under contract ERBFMRXT-CT970137. One author (RM) was also partially supported by the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICIT), Venezuela.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aström K.J., Hägglund T. (1988) PID Controllers: Theory, Design, and Tuning. Instrument Society of America, Research Triangle Park, NC

    Google Scholar 

  2. Åström K.J., Hägglund T. (2000) The Future of PID Control. In: Digital Control: Past, Present and Future of PID Control, IFAC Workshop at Terrasa. 19–30

    Google Scholar 

  3. Aström K.J., Wittenmark, B. (1984) Computer Controlled Systems. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  4. Bourlès H., Fliess M. (1997) Finite Poles and Zeros of Linear Systems: an Intrinsic Approach. Internat J Control 68:897–922

    Article  MATH  MathSciNet  Google Scholar 

  5. Buja G.S., Menis R., Valla M.I. (1995) Disturbance Torque Estimation in a Sensorless DC Drive. IEEE Trans Ind Electron 42:351–357

    Article  Google Scholar 

  6. Diop S. (1993) Closedness of Morphisms of Differential Algebraic Sets: Applications to System Theory. Forum Math 5:33–47

    Article  MATH  MathSciNet  Google Scholar 

  7. Diop S., Fliess M. (1991) On Nonlinear Observability. In: Proc. 1st European Control Conference at Grenoble. Hermès, Paris, 152–157

    Google Scholar 

  8. Diop S., Fliess M. (1991) Nonlinear Observability, Identifiability, and Persistent Trajectories. In: IEEE Conference on Decision and Control at Brighton. 714–719

    Google Scholar 

  9. Edwards C., Spurgeon S.K. (1998) Sliding Mode Control: Theory and Applications. Taylor & Francis, London

    Google Scholar 

  10. Erdélyi A. (1962) Operational Calculus and Generalized Functions. Holt Rinehard Winston, New York

    MATH  Google Scholar 

  11. Fliess M. (1990) Some Basic Structural Properties of Generalized Linear Systems. Systems Control Lett 15:391–396

    Article  MATH  MathSciNet  Google Scholar 

  12. Fliess M. (1992) A Remark on Willems’ Trajectory Characterization of Linear Controllability. Systems Control Lett 19:43–45

    Article  MATH  MathSciNet  Google Scholar 

  13. Fliess M. (1994) Une Interprétation Algébrique de la Transformation de Laplace et des Matrices de Transfert. Linear Alg Appl 203–204:429–442

    Article  MathSciNet  Google Scholar 

  14. Fliess M. (2000) Variations sur la Notion de Contrôlabilité. In: Quelques Aspects de la Théorie du Contrôle. Journée Annuelle Soc Math France, Paris, 47–86

    Google Scholar 

  15. Fliess M. (2000) Sur des Pensers Nouveaux Faisons des Vers Anciens. In: Actes Conférence Internationale Francophone d'Automatique at Lille

    Google Scholar 

  16. Fliess M., Lévine J., Martin P., Rouchon P. (1995) Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples. Internat J Control 61:1327–1361

    Article  MATH  MathSciNet  Google Scholar 

  17. Fliess M., Marquez R. (2000) Continuous-Time Linear Predictive Control and Flatness: A Module-Theoretic Setting with Examples. Internat J Control 73:606–623

    Article  MATH  MathSciNet  Google Scholar 

  18. Fliess M., Mounier H. (1998) Controllability and Observability of Linear Delay Systems: an Algebraic Approach. ESAIM COCV 3:301–314

    Article  MATH  MathSciNet  Google Scholar 

  19. Fliess M., Mounier H. (1999) Tracking Control and π-Freeness of Infinite Dimensional Linear Systems. In: Picci G., Gilliam D.S. (Eds.) Dynamical Systems, Control, Coding, Computer Vision. Birkhäuser, Basel, 45–68

    Google Scholar 

  20. Fliess M., Mounier H. (to appear) A Trajectorian Interpretation of Torsion-Free Controllability

    Google Scholar 

  21. Franklin G.F., Powell J.D., Naeini A. E. (1994) Feedback Control of Dynamic Systems, 3rd edn. Addison Wesley, Reading, MA

    Google Scholar 

  22. Jacobson N. (1974 & 1980) Basic Algebra I & II. Freeman, San Francisco

    Google Scholar 

  23. Kailath T. (1980) Linear Systems. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  24. Kolchin, E.R. (1973) Differential Algebra. Academic Press, New York

    MATH  Google Scholar 

  25. Louis J.-P., Multon B., Lavabre M. (1988) Commande de Machines à Courant Continu à Vitesse Variable. Techniques de l'Ingénieur, D 3610:1–14, D 3611:1–24, D 3612:1–13

    Google Scholar 

  26. Marquez R., Delaleau E., Fliess, M. (2000) Commande par PID Généralisé d'un Moteur Électrique sans Capteur Mécanique. In: Conférence Internationale Francophone d'Automatique at Lille

    Google Scholar 

  27. Marquez R., Fliess M. (2000) From PID to Model Predictive Control: A Flatness Based Approach. In: Digital Control: Past, Present and Future of PID Control, IFAC Workshop at Terrasa. 534–539.

    Google Scholar 

  28. Mikusiński J. (1983) Operational Calculus, 2nd edn, Vol. 1. PWN, Warsaw, & Oxford University Press, Oxford

    MATH  Google Scholar 

  29. Mikusiński J., Boehme T.K. (1987) Operational Calculus, 2nd edn, Vol. 2 PWN, Warsaw, & Oxford University Press, Oxford

    MATH  Google Scholar 

  30. van der Pol B., Bremmer H. (1995) Operational Calculus Based on the Two-Sided Laplace Integral, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  31. Ritt J.F. (1950) Differential Algebra. American Mathematical Society, New York

    MATH  Google Scholar 

  32. Slotine J.J.E., Li W. (1991) Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  33. Tan K.K., Wang Q.-G., Lee T.H., Hägglund T.J. (1999) Advances in PID Control. Springer, London

    Google Scholar 

  34. Wang Q.-G., Lee T.H., Tan K.K. (1999) Finite Spectrum Assigment for Time-Delay Systems. Springer, London

    Google Scholar 

  35. Yosida K. (1984) Operational Calculus. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Marquez .

Editor information

Alberto Isidori (Professor)Françoise Lamnabhi-Lagarrigue (Docteur D’état)Witold Respondek (Professor)

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Fliess, M., Marquez, R., Delaleau, E. (2001). State feedbacks without asymptotic observers and generalized PID regulators. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds) Nonlinear control in the Year 2000. Lecture Notes in Control and Information Sciences, vol 258. Springer, London. https://doi.org/10.1007/BFb0110227

Download citation

  • DOI: https://doi.org/10.1007/BFb0110227

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-363-8

  • Online ISBN: 978-1-84628-568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics