Skip to main content

A portable subroutine library for solving linear control problems on distributed memory computers

  • Conference paper
  • First Online:
Workshop on wide area networks and high performance computing

Abstract

This paper describes the design of a software library for solving the basic computational problems that arise in analysis and synthesis of linear control systems. The library is intended for use in high performance computing environments based on parallel distributed memory architectures. The portability of the library is ensured by using the BLACS, PBLAS, and ScaLAPACK as the basic layer of communication and computational routines. Preliminary numerical results demonstrate the performance of the developed codes on parallel computers.

Partially supported by the DAAD programme Acciones Integradas Hispano-Alemanas. Enrique S. Quintana-Ortí and Gregorio Quintana-Ortí were also supported by the Spanish CICYT Project TIC96-1062-C03-03.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.D.O. Anderson and J.B. Moore. Optimal Control — Linear Quadratic Methods. Prentice-Hall, Englewood Cliffs, NJ, 1990.

    MATH  Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. second edition, SIAM, Philadelphia, PA, 1995.

    Google Scholar 

  3. W.F. Arnold, III and A.J. Laub. Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE, 72:1746–1754, 1984.

    Article  Google Scholar 

  4. Z. Bai, J. Demmel, and M. Gu. An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems. Numer. Math., 76(3):279–308, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C: Algorithm 432. Comm. ACM, 15:820–826, 1972.

    Article  Google Scholar 

  6. P. Benner. Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems. Logos-Verlag, Berlin, Germany, 1997. Also: Dissertation, Fakultät für Mathematik, TU Chemnitz-Zwickau, 1997.

    MATH  Google Scholar 

  7. P. Benner and R. Byers. Disk functions and their relationship to the matrix sign function. In Proc. European Control Conf. ECC 97, Paper 936. BELWARE Information Technology, Waterloo, Belgium, 1997. CD-ROM.

    Google Scholar 

  8. P. Benner and R. Byers. An exact line search method for solving generalized continuous-time algebraic Riccati equations. IEEE Trans. Automat. Control, 43(1):101–107, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Benner, R. Byers, E.S. Quintana-Ortí, and G. Quintana-Ortí. Solving algebraic Riccati equations on parallel computers using Newton's method with exact line search. Berichte aus der Technomathematik, Report 98-05, Universität Bremen, August 1998. Available from http://www.math.uni-bremen.de/zetem/berichte.html.

    Google Scholar 

  10. P. Benner, M. Castillo, V. Hernández, and E.S. Quintana-Ortí. Parallel partial stabilizing algorithms for large linear control systems. J. Supercomputing, to appear.

    Google Scholar 

  11. P. Benner, J.M. Claver, and E.S. Quintana-Ortí. Efficient solution of coupled Lyapunov equations via matrix sign function iteration. In A. Dourado et al., editor, Proc. 3rd Portuguese Conf. on Automatic Control CONTROLO'98, Coimbra, pages 205–210, 1998.

    Google Scholar 

  12. P. Benner, J.M. Claver, and E.S. Quintana-Ortí. Parallel distributed solvers for large stable generalized Lyapunov equations. Parallel Processing Letters, to appear.

    Google Scholar 

  13. P. Benner and E.S. Quintana-Ortí. Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorithms, to appear.

    Google Scholar 

  14. P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí. Solving linear matrix equations via rational iterative schemes. In preparation.

    Google Scholar 

  15. L.S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

    MATH  Google Scholar 

  16. I. Blanquer, D. Guerrero, V. Hernandez, E. Quintana-Ortí, and P. Ruiz. Parallel-SLICOT implementation and documentation standards. SLICOT Working Note 1998-1, http://www.win.tue.nl/niconet/, September 1998.

    Google Scholar 

  17. D. Boley and R. Maier. A parallel QR algorithm for the unsymmetric eigenvalue problem. Technical Report TR-88-12, University of Minnesota at Minneapolis, Department of Computer Science, Minneapolis, MN, 1988.

    Google Scholar 

  18. R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl., 85:267–279, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  19. E.J. Davison and F.T. Man. The numerical solution of A'Q + QA =-C. IEEE Trans. Automat. Control, AC-13:448–449, 1968.

    Article  MathSciNet  Google Scholar 

  20. J.D. Gardiner and A.J. Laub. A generalization of the matrix-sign-function solution for algebraic Riccati equations. Internat. J. Control, 44:823–832, 1986.

    Article  MATH  Google Scholar 

  21. J.D. Gardiner and A.J. Laub. Parallel algorithms for algebraic Riccati equations. Internat. J. Control, 54:1317–1333, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.D. Gardiner, A.J. Laub, J.J. Amato, and C.B. Moler. Solution of the Sylvester matrix equation AXB + CXD = E. ACM Trans. Math. Software, 18:223–231, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  23. J.D. Gardiner, M.R. Wette, A.J. Laub, J.J. Amato, and C.B. Moler. Algorithm 705: A Fortran-77 software package for solving the Sylvester matrix equation AXB T + CXD T = E. ACM Trans. Math. Software, 18:232–238, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  24. G.A. Geist, R.C. Ward, G.J. Davis, and R.E. Funderlic. Finding eigenvalues and eigenvectors of unsymmetric matrices using a hypercube multiprocessor. In G. Fox, editor, Proc. 3rd Conference on Hypercube Concurrent Computers and Appl., pages 1577–1582, 1988.

    Google Scholar 

  25. G. H. Golub, S. Nash, and C. F. Van Loan. A Hessenberg-Schur method for the problem AX + XB = C. IEEE Trans. Automat. Control, AC-24:909–913, 1979.

    Article  Google Scholar 

  26. G.H. Golub and C.F. Van Loan. Matrix Computations. third edition, Johns Hopkins University Press, Baltimore, 1996.

    MATH  Google Scholar 

  27. M. Green and D.J.N Limebeer. Linear Robust Control. Prentice-Hall, Englewood Cliffs, NJ, 1995.

    MATH  Google Scholar 

  28. C.-H. Guo. Newton's method for discrete algebraic Riccati equations when the closed-loop matrix has eigenvalues on the unit circle. SIAM J. Matrix Anal. Appl., 20:279–294, 1998.

    Article  MATH  Google Scholar 

  29. C.-H. Guo and P. Lancaster. Analysis and modification of Newton's method for algebraic Riccati equations. Math. Comp., 67:1089–1105, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  30. S.J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Numer. Anal., 2:303–323, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  31. G. Henry and R. van de Geijn. Parallelizing the QR algorithm for the unsymmetric algebraic eigenvalue problem: myths and reality. SIAM J. Sci. Comput., 17:870–883, 1997.

    Article  Google Scholar 

  32. G. Henry, D.S. Watkins, and J.J. Dongarra. A parallel implementation of the nonsymmetric QR algorithm for distributed memory architectures. LAPACK Working Note 121, University of Tennessee at Knoxville, 1997.

    Google Scholar 

  33. G.A. Hewer. An iterative technique for the computation of steady state gains for the discrete optimal regulator. IEEE Trans. Automat. Control, AC-16:382–384, 1971.

    Article  Google Scholar 

  34. A.S. Hodel and K.R. Polla. Heuristic approaches to the solution of very large sparse Lyapunov and algebraic Riccati equations. In Proc. 27th IEEE Conf. Decis. Cont., Austin, TX, pages 2217–2222, 1988.

    Google Scholar 

  35. C. Kenney and A.J. Laub. The matrix sign function. IEEE Trans. Automat. Control, 40(8):1330–1348, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Kenney, A.J. Laub, and M. Wette. A stability-enhancing scaling procedure for Schur-Riccati solvers. Sys. Control Lett., 12:241–250, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  37. D. L. Kleinman. On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Control, AC-13:114–115, 1968.

    Article  Google Scholar 

  38. P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University Press, Oxford, 1995.

    Google Scholar 

  39. A.J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Control, AC-24:913–921, 1979.

    Article  MathSciNet  Google Scholar 

  40. A.J. Laub. Algebraic aspects of generalized eigenvalue problems for solving Riccati equations. In C.I. Byrnes and A. Lindquist, editors, Computational and Combinatorial Methods in Systems Theory, pages 213–227. Elsevier (North-Holland), 1986.

    Google Scholar 

  41. A.N. Malyshev. Parallel algorithm for solving some spectral problems of linear algebra. Linear Algebra Appl., 188/189:489–520, 1993.

    Article  MathSciNet  Google Scholar 

  42. V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg, July 1991.

    MATH  Google Scholar 

  43. V. Mehrmann. A step toward a unified treatment of continuous and discrete time control problems. Linear Algebra Appl., 241–243:749–779, 1996.

    Article  MathSciNet  Google Scholar 

  44. T. Pappas, A.J. Laub, and N.R. Sandell. On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Trans. Automat. Control, AC-25:631–641, 1980.

    Article  MathSciNet  Google Scholar 

  45. T. Penzl. Numerical solution of generalized Lyapunov equations. Adv. Comp. Math., 8:33–48, 1997.

    Article  MathSciNet  Google Scholar 

  46. J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat. J. Control, 32:677–687, 1980. (Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971).

    Article  MATH  MathSciNet  Google Scholar 

  47. A. Saberi, P. Sannuti, and B.M. Chen. H 2 Optimal Control. Prentice-Hall, Hertfordshire, UK, 1995.

    MATH  Google Scholar 

  48. G. Schelfhout. Model Reduction for Control Design. PhD thesis, Dept. Electrical Engineering, KU Leuven, 3001 Leuven-Heverlee, Belgium, 1996.

    Google Scholar 

  49. V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

    Google Scholar 

  50. R.A. Smith. Matrix equation XA + BX = C. SIAM J. Appl. Math., 16(1):198–201, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  51. G.W. Stewart. A parallel implementation of the QR algorithm. Parallel Computing, 5:187–196, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  52. X. Sun and E.S. Quintana-Ortí. Spectral division methods for block generalized Schur decompositions. PRISM Working Note #32, 1996. Available from http://www-c.mcs.anl.gov/Projects/PRISM.

    Google Scholar 

  53. P. Van Dooren. A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Statist. Comput., 2:121–135, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  54. A. Varga. A note on Hammarling's algorithm for the discrete Lyapunov equation. Sys. Control Lett., 15(3):273–275, 1990.

    Article  MATH  Google Scholar 

  55. A. Varga. Computation of Kronecker-like forms of a system pencil: Applications, algorithms and software. In Proc. CACSD'96 Symposium, Dearborn, MI, pages 77–82, 1996.

    Google Scholar 

  56. K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall, Upper Saddle River, NJ, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Cooperman (Professor)E. Jessen (Professor)G. Michler (Professor)

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Benner, P., Quintana-Ortí, E.S., Quintana-Ortí, G. (1999). A portable subroutine library for solving linear control problems on distributed memory computers. In: Cooperman, G., Jessen, E., Michler, G. (eds) Workshop on wide area networks and high performance computing. Lecture Notes in Control and Information Sciences, vol 249. Springer, London. https://doi.org/10.1007/BFb0110079

Download citation

  • DOI: https://doi.org/10.1007/BFb0110079

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-642-4

  • Online ISBN: 978-1-84628-578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics