Control of hysteretic systems: A state-space approach

  • R. B. Gorbet
  • K. A. Morris
  • D. W. L. Wang
Part D Robust Control
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 241)


Shape Memory Alloy Supply Rate Shape Memory Alloy Wire Shape Memory Alloy Actuator Hysteretic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.C. Anderson, Magnetism and Magnetic Materials, Chapman and Hall, 1968.Google Scholar
  2. [2]
    H.T. Banks, A.J. Kurdilla and G. Webb, “Identification of Hysteretic Control Influence Operators Representing Smart Actuators: Convergent Approximations”, CRSC-TR97-7, Center for Research in Scientific Computation, NCSU, 1997.Google Scholar
  3. [3]
    M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, 1996.Google Scholar
  4. [4]
    R.F. Curtain and A.J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer-Verlag, 1978.Google Scholar
  5. [5]
    R.B. Gorbet, Control of Hysteretic Systems with Preisach Representations, Ph.D. Thesis, University of Waterloo, Waterloo, Canada, 1997.Google Scholar
  6. [6]
    R.B. Gorbet, D.W.L. Wang and K.A. Morris, “Preisach Model Identification of a Two-Wire SMA Actuator”, IEEE ICRA 1998, submitted, October, 1997.Google Scholar
  7. [7]
    R.B. Gorbet, K.A. Morris and D.W.L. Wang, “Stability of Control Systems for the Preisach Hysteresis Model”, Journal of Engineering Design and Automation, to appear.Google Scholar
  8. [8]
    M. Hashimoto, M. Takeda, H. Sagawa, I. Chiba and K. Sato, “Application of shape memory alloy to robotic actuators”, Journal of Robotic Systems, Vol. 2, No. 1, pp. 3–25, 1985.Google Scholar
  9. [9]
    D. Hughes and J.T. Wen, “Preisach modeling of piezoceramic and shape memory alloy hysteresis”, 1995 IEEE Control Conference on Applications, Albany, New York, September 1995.Google Scholar
  10. [10]
    I.D. Mayergoyz, Mathematical Models of Hysteresis, Springer-Verlag, 1991.Google Scholar
  11. [11]
    K.A. Morris and J.N. Juang, “Dissipative Controller Designs for Second-Order Dynamic Systems”, IEEE Transactions on Automatic Control, Vol. 39, No. 5, pp. 1056–1063, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Visintin, Differential Models of Hysteresis, Springer-Verlag, 1994.Google Scholar
  13. [13]
    J.C. Willems, “Dissipative Dynamical Systems, Part I: General Theory”, Archives for Rational Mechanics and Analysis, Vol. 45, pp. 321–351, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    S. Yokota, K. Yoshida, K. Bandoh and M. Suhara, “Response of proportional valve using shape-memory-alloy array actuators”, 13th IFAC World Congress, pp. 505–510, IFAC, 1996.Google Scholar

Copyright information

© Springer-Verlag London Limited 1999

Authors and Affiliations

  • R. B. Gorbet
    • 1
  • K. A. Morris
    • 2
  • D. W. L. Wang
    • 3
  1. 1.Systems Control GroupUniversity of TorontoToronto
  2. 2.Dept. of Applied MathematicsUniversity of WaterlooWaterloo
  3. 3.Dept. of Electrical & Computer EngineeringUniversity of WaterlooWaterloo

Personalised recommendations