Advertisement

Time domain characterizations of performance limitations of feedback control

  • Li Qiu
  • Jie Chen
Part D Robust Control
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 241)

Keywords

Blaschke Product Discrete Time Case Coprime Factorization Nonminimum Phase Unstable Polis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Chen, “Sensitivity integral relations and design trade-offs in linear multivariable feedback systems”, IEEE Trans. Autom. Contr., vol. 40, pp. 1700–1716, 1995.zbMATHCrossRefGoogle Scholar
  2. [2]
    J. Chen, “On logarithmic integrals and performance bounds for MIMO system, part I and part II”, Preprints, 1997.Google Scholar
  3. [3]
    J. Chen, L. Qiu, and O. Toker, “Limitations on maximal tracking accuracy”, Proc. 35th IEEE Conf. on Decision and Control, pp. 726–731, 1996, submitted to IEEE Trans. Autom. Contr..Google Scholar
  4. [4]
    J. Chen, L. Qiu, and O. Toker, “Limitation on maximal tracking accuracy, part 2: tracking sinusoidal and ramp signals”, Proc. 1997 American Control Conf., pp. 1757–1761, 1997.Google Scholar
  5. [5]
    E. J. Davison and B. M. Scherzinger, “Perfect control of the robust servomechanism problem”, IEEE Trans. Autom. Contr., vol. 32, pp. 689–702, 1987.zbMATHCrossRefGoogle Scholar
  6. [6]
    B. A. Francis, A Course in H Control Theory, Springer-Verlag, 1987.Google Scholar
  7. [7]
    J. Freudenberg and D. Looze, Frequency Domain Properties of Scalar and Multivariable Feedback Systems, Springer-Verlag, 1988.Google Scholar
  8. [8]
    G. C. Goodwin and M. M. Seron, “Fundamental design tradeoffs in filtering, prediction, and smoothing”, IEEE Trans. Autom. Contr., vol. 42, pp. 1240–1251, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    H. Kwakernaak, “Symmetries in control system design”, Trends in Control: A European Perspective, A. Isidori, editor, pp. 17–51, Springer, 1995.Google Scholar
  10. [10]
    H. Kwakernaak and R. Sivan, “The maximal achievable accuracy of linear optimal regulators and linear optimal filters”, IEEE Trans. Autom. Contr., vol. 17, pp. 79–86, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley Interscience, New York, 1972.zbMATHGoogle Scholar
  12. [12]
    M. Morari and E. Zafiriou, Robust Process Control, Prentice Hall, Englewood Cliffs, NJ, 1989.Google Scholar
  13. [13]
    L. Qiu and E. J. Davison, “Performance limitations of non-minimum phase systems in the servomechanism problem”, Automatica, vol. 29, pp. 337–349, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J. Shamma, “Performance limitations in sensitivity reduction for nonlinear plants”, System & Control Letters, vol. 27, pp. 249–254, 1991.Google Scholar
  15. [15]
    M. M. Seron, J. H. Braslavsky, and G. C. Goodwin, Fundamental Limitations in Filtering and Control, Springer, London, 1997.zbMATHGoogle Scholar
  16. [16]
    M. M. Seron, J. H. Braslavsky, P. V. Kokotović, and D. Q. Mayne, “Feedback limitations in nonlinear systems: from Bode integrals to cheap control”, IEEE Trans. on Automatic Control, 1998, to appear.Google Scholar
  17. [17]
    M. M. Seron, J. H. Braslavsky, D. G. Mayne, and P. V. Kokotović, “Limiting performance of optimal linear filters”, Preprints, 1997.Google Scholar
  18. [18]
    O. Toker, J. Chen, and L. Qiu, “Tracking performance limitations for multivariable discrete time systems”, Proc. 1997 American Control Conf., pp. 3887–3891, 1997. Also submitted to Automatica.Google Scholar
  19. [19]
    M. Vidyasagar, Control System Synthesis: A Factorization Approach, The MIT Press, 1985.Google Scholar

Copyright information

© Springer-Verlag London Limited 1999

Authors and Affiliations

  • Li Qiu
    • 1
  • Jie Chen
    • 2
  1. 1.Department of Electrical & Electronic EngineeringHong Kong University of Science & TechnologyHong Kong
  2. 2.Department of Electrical Engineering, College of EngineeringUniversity of CaliforniaRiverside

Personalised recommendations