From sampled-data control to signal processing

  • Yutaka Yamamoto
  • Pramod P. Khargonekar
Part B Hybrid Systems
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 241)


Digital Signal Processing Minimal Realization State Space Realization Linear Periodic System Polyphase Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Bamieh and J. B. Pearson, “A general framework for linear periodic systems with applications to H sampled-data control,” IEEE Trans. Autom. Control, AC-37: 418–435, 1992.CrossRefMathSciNetGoogle Scholar
  2. [2]
    T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems, Springer, 1995.Google Scholar
  3. [3]
    T. Chen and B. A. Francis, “Design of multirate filter banks by H opimization,” IEEE Trans. Signal Processing, SP-43: 2822–2830, 1995.CrossRefGoogle Scholar
  4. [4]
    J. H. Davis, “Stability conditions derived from spectral theory: discrete systems with periodic feedback,” SIAM J. Control, 10: 1–13, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. Dasgupta, “A glimpse of multirate signal processing,” Semi-plenary Lecture at 4th ECC: 329–358, 1997.Google Scholar
  6. [6]
    N. J. Fliege, Multirate Digital Signal Processing, Wiley, 1994.Google Scholar
  7. [7]
    Y. Hayakawa, S. Hara and Y. Yamamoto, “H type problem for sampleddata control systems—a solution via minimum energy characterization,” IEEE Trans. Autom. Control, 39: pp. 2278–2284, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. T. Kabamba and S. Hara, “Worst case analysis and design of sampled data control systems,” IEEE Trans. Autom. Control, AC-38: 1337–1357, 1993.CrossRefMathSciNetGoogle Scholar
  9. [9]
    P. P. Khargonekar, K. Poolla and A. Tannenbaum, “Robust control of linear time-invariant plants using periodic compensation,” IEEE Trans. Autom. Control, AC-30: 1088–1096, 1985.CrossRefMathSciNetGoogle Scholar
  10. [10]
    P. P. Khargonekar and Y. Yamamoto, “Delayed signal reconstruction using sampled-data control,” Proc. 35th IEEE CDC, pp. 1259–1263 (1996)Google Scholar
  11. [11]
    R. G. Shenoy, D. Burnside and T. W. Parks, “Linear periodic systems and multirate filter design,” IEEE Trans. Signal Processing, SP-42: 2242–2256, 1994.CrossRefGoogle Scholar
  12. [12]
    P. P. Vaidyanathan Multirate Systems and Filter Banks, Prentice-Hill, 1993.Google Scholar
  13. [13]
    Y. Yamamoto, “A function space approach to sampled-data control systems and tracking problems,” IEEE Trans. Autom. Control, AC-39: 703–712, 1994.CrossRefGoogle Scholar
  14. [14]
    Y. Yamamoto and P. P. Khargonekar, “Frequency response of sampleddata systems,” IEEE Trans. Autom. Control, AC-41: 166–176, 1996.CrossRefMathSciNetGoogle Scholar
  15. [15]
    A. I. Zayed, Advances in Shannon's Sampling Theory, CRC Press, 1993.Google Scholar
  16. [16]
    K. Zhou and P. P. Khargonekar, “On the weighted sensitivity minimination problem for delay systems,” Syst. Control Lett., 8: 307–312, 1987.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1999

Authors and Affiliations

  • Yutaka Yamamoto
    • 1
  • Pramod P. Khargonekar
    • 2
  1. 1.Department of Applied Analysis and Complex Dynamical Systems, Graduate School of InformaticsKyoto UniversityKyotoJapan
  2. 2.Department of Electrical Engineering and Computer ScienceThe University of MichiganAnn ArborUSA

Personalised recommendations