Advertisement

Entanglements in semi-dilute solutions as revealed by elongational flow studies

  • A. Keller
  • A. J. Müller
  • J. A. Odell
Transient Networks
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 75)

Abstract

Our methodology of chain stretching using elongational flow enables identification of circumstances in which macromolecules in solution extend cooperatively, in contrast to their extending in isolation. This opens a new window for the detection and study of entanglements. In addition to defining the concentration for the required degree of coil overlap, the present studies also define the time scale on which the geometric entanglement becomes mechanically effective, thus introducing a dynamic element to the identification and classification of entanglements. The entanglements develop through a sequence of patterns, periodic both in time and space with increasing strain rate. The strain patterns thus arising modify the flow field locally, assessed by velocimetry. Further, the macroscopic flow resistance (“elongational viscosity”) is determined and correlated with the various stages of chain stretching and network formation. These findings link molecular behaviour and macrorheology. Examples from engineering applications indicate how entanglements may help to account for the various flow modifying actions of polymeric additives, and conversely, how experience gained in engineering applications can potentially further the study of entanglements.

Key words

Elongational-flow semi-dilute solution elongational-viscosity entanglements birefringence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Odell JA, Keller A, Miles MJ (1985) Polymer 26:1219CrossRefGoogle Scholar
  2. 2.
    Chow A, Keller A, Müller AJ, Odell JA (1987) Macromolecules, in pressGoogle Scholar
  3. 3.
    Pope DP, Keller A (1978) Coll & Polym Sci 256:751CrossRefGoogle Scholar
  4. 4.
    Farrell CJ, Keller A, Miles MJ, Pope DP (1980) Polym 21:129CrossRefGoogle Scholar
  5. 5.
    Keller A, Odell JA (1985) Coll & Polym Sci 263:181CrossRefGoogle Scholar
  6. 6.
    Odell JA (1988) J Polym Sci, Polym Phys Ed, in pressGoogle Scholar
  7. 7.
    Peterlin A (1966) J Polym Sci (B) 4:287CrossRefGoogle Scholar
  8. 8.
    De Gennes PG (1974) J Chem Phys 60:5030CrossRefGoogle Scholar
  9. 9.
    Brestkin YuV, Saddikov IS, Agranova SA, Baranov VG, Frenkel S (1986) Polym Bull 15:147CrossRefGoogle Scholar
  10. 10.
    Atkins EOT, Attwool PT, Miles MJ (1988) in preparationGoogle Scholar
  11. 11.
    Odell JA, Keller A, Miles MJ (1983) Polym Communications 24:7Google Scholar
  12. 12.
    Odell JA, Keller A (1986) J Polym Sci, Polym Phys 24:1889CrossRefGoogle Scholar
  13. 13.
    Odell JA, Keller A, Rabin Y (1988) J Chem Phys, in pressGoogle Scholar
  14. 14.
    Odell JA, Atkins EOT, Keller A (1983) J Polym Sci Lett 21:289CrossRefGoogle Scholar
  15. 15.
    Odell JA, Keller A, Atkins EDT (1985) Macromolecules 18:1443CrossRefGoogle Scholar
  16. 16.
    Atkins EDT, Miyamato Y (1988) in preparationGoogle Scholar
  17. 17.
    Miles MJ, Tanaka K, Keller A (1983) Polymer 24:1081CrossRefGoogle Scholar
  18. 18.
    Martin JE (1984) Macromolecules 17:1279CrossRefGoogle Scholar
  19. 19.
    Leger L, Hervet H, Rondelez F (1981) Macromolecules 14:1732CrossRefGoogle Scholar
  20. 20.
    Cotton JP, Nierlich M, Bove F, Daoud M, Farnoux B, Janninck G, Dupplesix R, Picot CJ (1976) J Chem Phys 65:1101CrossRefGoogle Scholar
  21. 21.
    Flory PJ (ed) (1966) Principles of Polymer Chemistry, 5th Edition, Cornell University, IthacaGoogle Scholar
  22. 22.
    Tan H, Moet A, Hiltner A, Baer E (1983) Macromolecules 16:28CrossRefGoogle Scholar
  23. 23.
    Odell JA (1988) in preparationGoogle Scholar
  24. 24.
    Farinato RS (1986) Abstract and Lecture, Bristol Conference, Flexibility of Macromolecules in Solution, Inst Physics, LondonGoogle Scholar
  25. 25.
    Gardner K, Pike ER, Miles MJ, Keller A, Tanaka K (1982) Polymer 23:1432CrossRefGoogle Scholar
  26. 26.
    Lyazid A, Scrivener O, Teitgen R (1980) In: Asterita G, Marruci G, Nicolais L (eds) Rheology, Plenum Pub Corp, New York, V2:141Google Scholar
  27. 27.
    Gampert B (ed) (1985) Proc IUTAM-Symposium, The influence of polymer additives on velocity and temperature fields, Essen, FRG, 26–28th June, 1984, Springer BerlinGoogle Scholar
  28. 28.
    Bird RB, Armstrong RQ, Hassager O (eds) (1977) Dynamics of polymeric liquids, Vol 1 and 2, John Wiley and Sons Inc, New YorkGoogle Scholar
  29. 29.
    Lumley JL (1969) Ann Rev Fluid Mech 1:367–384CrossRefGoogle Scholar
  30. 30.
    Odell JA, Tucker IM, Ferry M, Müller AJ (1988) in preparationGoogle Scholar
  31. 31.
    Haas R, Durst F (1982) Rheol Acta 21:150CrossRefGoogle Scholar
  32. 32.
    Durst F, Haas R, Kaczmar BU (1981) J Appl Polymer Sci 26:3125CrossRefGoogle Scholar
  33. 33.
    Chao KK, Child CA, Grens EA, Williams MC (1984) AIChEJ 30:111CrossRefGoogle Scholar
  34. 34.
    Keller A, Müller AJ, Odell JA (1988) Polymer, to be publishedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  • A. Keller
    • 1
  • A. J. Müller
    • 1
  • J. A. Odell
    • 1
  1. 1.H. H. Wills Physics LaboratoryUniversity of BristolBristolG.B.R.

Personalised recommendations