Dynamics of permanent and temporary networks: Small angle neutron scattering measurements and related remarks on the classical models of rubber deformation

  • F. Boué
  • J. Bastide
  • M. Buzier
  • C. Collette
  • A. Lapp
  • J. Herz
Transient Networks
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 75)


We observed the neutron scattering of mixtures of deuterated and normal polystyrene in bulk for samples (strips) undergoing a stress relaxation after a step-strain. Some samples were just melt (i.e. molten at T > Tg=100°C), others were crosslinked and thus some were rubbers at T > Tg. The scattering measured at different times elapsed after the step-strain gives access to the dynamics at the submolecular scale (300-10 A). It is compared with the theoretical predictions that one may extract from the classical models. Observed discrepancies are tentatively interpreted following several “remarks” on the topology of the network and the possible mechanisms of deformation at the corresponding scales.

Key words

Polymer networks rubber de formation small angle neutron scattering dynamics relaxation polystyrene crosslinking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.a)
    Bastide J, Herz J, Boué F (1985) J Physique 46:1967CrossRefGoogle Scholar
  2. 1.b)
    Boué F (July 1987) Transient relaxation mechanisms of polymer melts and rubbers investigated by SANS, Adv Pol Sci, Vol 82Google Scholar
  3. 2.
    de Gennes PG (1977) Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New YorkGoogle Scholar
  4. 3.
    Ferry JD (1983) Viscoelastic properties of polymers, J WileyGoogle Scholar
  5. 4.
    Kuhn W (1936) 76:258; (1939) 87:3Google Scholar
  6. 5.
    James H, Guth E (1947) J Chem Phys 15:669; (1947) 15:651CrossRefGoogle Scholar
  7. 6.
    Deam RT, Edwards SF (1976) Phil Trans R Soc Lond A, 280:1296CrossRefGoogle Scholar
  8. 6.b)
    Doi M, Edwards SF (1986) The Theory of Polymer dynamics, Oxford Umv Press, Walter Street, OxfordGoogle Scholar
  9. 7.
    Doi M, Edwards SF (1978) J Chem Soc Faraday Trans 2, 74:1802Google Scholar
  10. 7.b)
    Flory PJ (1976) Proc Soc 351:351, for a review of the major original modelsCrossRefGoogle Scholar
  11. 8.
    Graessley (1975) Macromolecules 8:186 (1975) Macromolecules 8:865CrossRefGoogle Scholar
  12. 9.
    Erman B, Flory PJ (1982) Macromolecules 15:800; (1978) J Chem Phys 68:5363CrossRefGoogle Scholar
  13. 10.
    Bastide J, Candau S, Picot C (1980) J Macromol Phys B19:13Google Scholar
  14. 11.
    Zimm BH, Stockmayer WH (1949) J Chem Phys 17:1301; Stockmayer WH (1943) J Chem Phys 11:45; Flory PJ, Principles of polymer chemistry, Cornell University Press, Ithaca, New YorkCrossRefGoogle Scholar
  15. 12.
    Daoud M, Bouchaud E, Jannink G (1986) Macromolecules 19:1955CrossRefGoogle Scholar
  16. 13.
    de Gennes PG (1977) J Phys Lett 38:355CrossRefGoogle Scholar
  17. 14.
    Mandelbrot B (1977) Fractals: form, chance and dimensions, Freeman, San FranciscoGoogle Scholar
  18. 15.
    Alexander S (1985) In: Boccara N, Daoud M (eds) Physics of Finely Divided Matter, Springer Proc Phys 5, Springer Verlag, Heidelberg; Alexander S (1984) J Physique, Paris 45Google Scholar
  19. 16.
    Bastide J, Boué F (1986) Physica 140 A, 251Google Scholar
  20. 17.
    Bastide J, Boué F, to be submitted to MacromoleculesGoogle Scholar
  21. 18.
    Mayen M (1985) Europ Poly J 21:903CrossRefGoogle Scholar
  22. 19.
    Beltzung M, Picot C, Herz J (1984) Macromolecules 17:663CrossRefGoogle Scholar
  23. 20.
    Kuhn W, Künzle O, Katchalsky A (1948) Helvet Chimica Acta Vol XXXI:VHGoogle Scholar
  24. 21.
    Benoit H (1964) C.R.M. lectures, S. Levy Thesis, Strasbourg; Ullman R (1979) J Chem Phys 71:436Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  • F. Boué
    • 1
  • J. Bastide
    • 1
    • 2
  • M. Buzier
    • 1
  • C. Collette
    • 3
  • A. Lapp
    • 1
    • 2
  • J. Herz
    • 2
  1. 1.CEN-SaclayLaboratoire Léon BrillouinGif-sur-YvetteFrance
  2. 2.Institut Charles Sadron, C.R.M.StrasbourgFrance
  3. 3.Laboratoire de Physico-Chimie MacromoléculaireEcole Supérieure de Physique et ChimieParisFrance

Personalised recommendations