Skip to main content

Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules

  • Transient Networks
  • Conference paper
  • First Online:
Permanent and Transient Networks

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 75))

Abstract

Melt elasticity has a strong impact on both the processing behaviour of polymers and end use properties of fabricated parts. This paper compiles in the first part relations describing time-dependent and steady-state orientations (flow birefringence) as well as elastic strains for different deformation histories. Analytical expressions based on the relaxation time spectrum and rubber-like liquid theory are obtained for small shear or elongational strains. An at least approximate description is possible for high deformation rates and strains. Some fundamental theoretical predictions are compared with experimental results obtained on polystyrene and polyolefine melts of different molecular structure.

In addition, the second part presents fundamental experimental results on the influence of average molar mass and molar mass distribution on dynamic moduli, viscosity functions, normal stress coefficients, recoverable shear strains, extrudate swell, entrance pressure losses, and flow instabilities. The kind of side groups of the C-C-backbone as well as the type and number of chain branches in polyolefines affects the viscosity level and the temperature dependence (flow activation energy) of the rheological quantities. Long chain branching causes deviations from a thermorheologically simple behaviour. The experimental results are discussed in simple model images, taking into account the reptation motion of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cogswell FN (1981) Polymer Melt Rheology, Wiley, New York

    Google Scholar 

  2. Han CD (1976) Rheology in Polymer Processing, Academic Press, New York

    Google Scholar 

  3. Janeschitz-Kriegl H (1969) Adv Polym Sci 6:170

    CAS  Google Scholar 

  4. Janeschitz-Kriegl H (1983) Polymer Melt Rheology and Flow Birefringence, Springer, Heidelberg

    Google Scholar 

  5. Retting W (1975) Coll & Polym Sci 253:852

    Article  CAS  Google Scholar 

  6. Jones TT (1976) Pure & Appl Chem 45:39

    Google Scholar 

  7. Lodge AS (1964) Elastic Liquids Academic Press, New York

    Google Scholar 

  8. Meißner J (1971) Kunststoffe 61:576

    Google Scholar 

  9. Treolar LRG (1956) In: Stuart HA (ed) Die Physik der Hochpolymeren, Bd IV, Springer, Heidelberg

    Google Scholar 

  10. Kuhn W, Grün F (1942) Kolloid-Z Z Polymere 101:248

    CAS  Google Scholar 

  11. Wagner HM (1979) Rheol Acta 18:33

    Article  CAS  Google Scholar 

  12. Laun HM (1978) Rheol Acta 17:1

    Article  CAS  Google Scholar 

  13. Laun HM (1981) Coll & Polym Sci 259:97

    Article  CAS  Google Scholar 

  14. Ferry JD (1980) Viscoelastic Properties of Polymers 3rd Ed, Wiley, New York

    Google Scholar 

  15. Pfandl W, Schwarzl FR (1985) CoU & Polym Sci 263:328

    Article  CAS  Google Scholar 

  16. Schausberger A et al. (1983) Rheol Acta 22:550

    Article  CAS  Google Scholar 

  17. Montfort JP et al. (1979) Rheol Acta 18:623

    Article  CAS  Google Scholar 

  18. Berstedt BH (1979) J Appl Polym Sci 23:1279

    Article  Google Scholar 

  19. Heron H, Pedersen S, Chapoy LL (1976) Rheol Acta 15:379

    Article  CAS  Google Scholar 

  20. Laun HM, Münstedt H (1978) Rheol Acta 17:415

    Article  CAS  Google Scholar 

  21. Münstedt H, Laun HM (1979) Rheol Acta 18:492

    Article  Google Scholar 

  22. Wagner MH (1976) Rheol Acta 15:136

    Article  CAS  Google Scholar 

  23. Wagner MH (1977) Rheol Acta 16:43

    Article  Google Scholar 

  24. Wagner HM, Meißner J (1980) Makromol Chem 181:1533

    Article  CAS  Google Scholar 

  25. Laun HM (1986) J Rheol 30:459

    Article  CAS  Google Scholar 

  26. Laun HM, Münstedt H (1976) Rheol Acta 15:517

    Article  CAS  Google Scholar 

  27. Meißner J (1975) Rheol Acta 14:201

    Article  Google Scholar 

  28. Gortemaker FH et al (1976) Rheol Acta 15:256

    Article  CAS  Google Scholar 

  29. Graessley WW (1974) Adv Polym Sci 16:1

    Article  Google Scholar 

  30. Pechhold W (1980) Coll & Polym Sci 258:269

    Article  CAS  Google Scholar 

  31. Genannt R, Pechhold W, Großmann HP (1977) Coll & Polym Sci 255:285

    Article  CAS  Google Scholar 

  32. Pechhold W (1984) Makromol Chem Suppl 6:163

    Article  CAS  Google Scholar 

  33. De Gennes PG (1971) J Chem Phys 55:572

    Article  Google Scholar 

  34. Doi M, Edwards SF (1978) J S C Faraday II 74:1789, 1802, 1818

    Article  CAS  Google Scholar 

  35. Doi M (1981) J Polym Sci, Letters 19:265

    Article  CAS  Google Scholar 

  36. Doi M (1983) J Polym Sci, Physics 21:667

    Article  CAS  Google Scholar 

  37. Wendel H (1981) Colloid Polym Sci 259:908

    Article  CAS  Google Scholar 

  38. Goldbach G, Retting W (1978) In: Ullmanns Encyklopädie der technischen Chemie, Verlag Chemie, Weinheim 15:219

    Google Scholar 

  39. Graessley WW (1982) Adv Polym Sci 47:47

    Google Scholar 

  40. Pechhold W, von Soden W, Stoll B (1981) Makromol Chem 182:573

    CAS  Google Scholar 

  41. p 249 in [14]

    Google Scholar 

  42. Laun HM (1979) Rheol Acta 18:478

    Article  CAS  Google Scholar 

  43. Zosel A (1971) Kolloid-Z u Z Polymere 246:657

    Article  CAS  Google Scholar 

  44. Klein J et al. (1984) Rheol Acta 23:277

    Article  Google Scholar 

  45. Laun HM, Meißner J (1980) Rheol Acta 19:60

    Article  CAS  Google Scholar 

  46. Franck AP (1984) J Rheol 28:492

    Google Scholar 

  47. Laun HM (1986) IN: Proceedings of the 2nd Conference of European Rheologists, Prague, to appear in Rheol Acta

    Google Scholar 

  48. Cox WP, Merz EH (1958) J Polym Sci 28:619

    Article  CAS  Google Scholar 

  49. Pfandl W et al. (1984) Rheol Acta 23:277

    Article  CAS  Google Scholar 

  50. DIN 53753 (1983) ASTM 12/83

    Google Scholar 

  51. Zosel A (1971) Rheol Acta 10:215

    Article  CAS  Google Scholar 

  52. Vlachopolus J (1981) Rev Def Behav Mat 3:219

    Google Scholar 

  53. Uhland E (1979) Rheol Acta 18:1

    Article  CAS  Google Scholar 

  54. Laun HM (1982) Rheol Acta 21:464

    Article  Google Scholar 

  55. Fleißner M (1981) Angew Makromol Chem 94:197

    Article  Google Scholar 

  56. Wang J-S et al (1978) J Polym Sci, Physics 16:1709

    Article  CAS  Google Scholar 

  57. Wang J-S et al (1970) J Polym Sci, Letters 8:671

    Article  CAS  Google Scholar 

  58. Rokudai M, Fujiki T (1981) J Appl Polym Sci 26:1343

    Article  CAS  Google Scholar 

  59. Meißner J (1965) In: Proc IVth Int Congress on Rheology, Part 3, page 437, Interscience Publishers, New York

    Google Scholar 

  60. Figure 6 on page 579 in [8]

    Google Scholar 

  61. Münstedt H (1981) Coll & Polym Sci 259:966

    Article  Google Scholar 

  62. Meißner J (1975) Pure & Appl Chem 42:553

    Google Scholar 

  63. Münstedt H (1978) Kunststoffe 68:92

    Google Scholar 

  64. Montfort JP et al. (1978) Polymer 19:277

    Article  CAS  Google Scholar 

  65. Graessley WW, Struglinski MJ (1986) Macromolecules 19:1754

    Article  CAS  Google Scholar 

  66. Montfort JP, Marin G, Monge Ph (1986) Macromolecules 19:1979

    Article  CAS  Google Scholar 

  67. Graessley WW (1982) Macromolecules 15:1164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Laun, H.M. (1987). Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules. In: Permanent and Transient Networks. Progress in Colloid & Polymer Science, vol 75. Steinkopff. https://doi.org/10.1007/BFb0109414

Download citation

  • DOI: https://doi.org/10.1007/BFb0109414

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0725-8

  • Online ISBN: 978-3-7985-1696-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics