Advertisement

Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules

  • H. M. Laun
Transient Networks
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 75)

Abstract

Melt elasticity has a strong impact on both the processing behaviour of polymers and end use properties of fabricated parts. This paper compiles in the first part relations describing time-dependent and steady-state orientations (flow birefringence) as well as elastic strains for different deformation histories. Analytical expressions based on the relaxation time spectrum and rubber-like liquid theory are obtained for small shear or elongational strains. An at least approximate description is possible for high deformation rates and strains. Some fundamental theoretical predictions are compared with experimental results obtained on polystyrene and polyolefine melts of different molecular structure.

In addition, the second part presents fundamental experimental results on the influence of average molar mass and molar mass distribution on dynamic moduli, viscosity functions, normal stress coefficients, recoverable shear strains, extrudate swell, entrance pressure losses, and flow instabilities. The kind of side groups of the C-C-backbone as well as the type and number of chain branches in polyolefines affects the viscosity level and the temperature dependence (flow activation energy) of the rheological quantities. Long chain branching causes deviations from a thermorheologically simple behaviour. The experimental results are discussed in simple model images, taking into account the reptation motion of the molecules.

Key words

Polymer melt elastic properties molecular orientation molar mass distribution branching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cogswell FN (1981) Polymer Melt Rheology, Wiley, New YorkGoogle Scholar
  2. 2.
    Han CD (1976) Rheology in Polymer Processing, Academic Press, New YorkGoogle Scholar
  3. 3.
    Janeschitz-Kriegl H (1969) Adv Polym Sci 6:170Google Scholar
  4. 4.
    Janeschitz-Kriegl H (1983) Polymer Melt Rheology and Flow Birefringence, Springer, HeidelbergGoogle Scholar
  5. 5.
    Retting W (1975) Coll & Polym Sci 253:852CrossRefGoogle Scholar
  6. 6.
    Jones TT (1976) Pure & Appl Chem 45:39Google Scholar
  7. 7.
    Lodge AS (1964) Elastic Liquids Academic Press, New YorkGoogle Scholar
  8. 8.
    Meißner J (1971) Kunststoffe 61:576Google Scholar
  9. 9.
    Treolar LRG (1956) In: Stuart HA (ed) Die Physik der Hochpolymeren, Bd IV, Springer, HeidelbergGoogle Scholar
  10. 10.
    Kuhn W, Grün F (1942) Kolloid-Z Z Polymere 101:248Google Scholar
  11. 11.
    Wagner HM (1979) Rheol Acta 18:33CrossRefGoogle Scholar
  12. 12.
    Laun HM (1978) Rheol Acta 17:1CrossRefGoogle Scholar
  13. 13.
    Laun HM (1981) Coll & Polym Sci 259:97CrossRefGoogle Scholar
  14. 14.
    Ferry JD (1980) Viscoelastic Properties of Polymers 3rd Ed, Wiley, New YorkGoogle Scholar
  15. 15.
    Pfandl W, Schwarzl FR (1985) CoU & Polym Sci 263:328CrossRefGoogle Scholar
  16. 16.
    Schausberger A et al. (1983) Rheol Acta 22:550CrossRefGoogle Scholar
  17. 17.
    Montfort JP et al. (1979) Rheol Acta 18:623CrossRefGoogle Scholar
  18. 18.
    Berstedt BH (1979) J Appl Polym Sci 23:1279CrossRefGoogle Scholar
  19. 19.
    Heron H, Pedersen S, Chapoy LL (1976) Rheol Acta 15:379CrossRefGoogle Scholar
  20. 20.
    Laun HM, Münstedt H (1978) Rheol Acta 17:415CrossRefGoogle Scholar
  21. 21.
    Münstedt H, Laun HM (1979) Rheol Acta 18:492CrossRefGoogle Scholar
  22. 22.
    Wagner MH (1976) Rheol Acta 15:136CrossRefGoogle Scholar
  23. 23.
    Wagner MH (1977) Rheol Acta 16:43CrossRefGoogle Scholar
  24. 24.
    Wagner HM, Meißner J (1980) Makromol Chem 181:1533CrossRefGoogle Scholar
  25. 25.
    Laun HM (1986) J Rheol 30:459CrossRefGoogle Scholar
  26. 26.
    Laun HM, Münstedt H (1976) Rheol Acta 15:517CrossRefGoogle Scholar
  27. 27.
    Meißner J (1975) Rheol Acta 14:201CrossRefGoogle Scholar
  28. 28.
    Gortemaker FH et al (1976) Rheol Acta 15:256CrossRefGoogle Scholar
  29. 29.
    Graessley WW (1974) Adv Polym Sci 16:1CrossRefGoogle Scholar
  30. 30.
    Pechhold W (1980) Coll & Polym Sci 258:269CrossRefGoogle Scholar
  31. 31.
    Genannt R, Pechhold W, Großmann HP (1977) Coll & Polym Sci 255:285CrossRefGoogle Scholar
  32. 32.
    Pechhold W (1984) Makromol Chem Suppl 6:163CrossRefGoogle Scholar
  33. 33.
    De Gennes PG (1971) J Chem Phys 55:572CrossRefGoogle Scholar
  34. 34.
    Doi M, Edwards SF (1978) J S C Faraday II 74:1789, 1802, 1818CrossRefGoogle Scholar
  35. 35.
    Doi M (1981) J Polym Sci, Letters 19:265CrossRefGoogle Scholar
  36. 36.
    Doi M (1983) J Polym Sci, Physics 21:667CrossRefGoogle Scholar
  37. 37.
    Wendel H (1981) Colloid Polym Sci 259:908CrossRefGoogle Scholar
  38. 38.
    Goldbach G, Retting W (1978) In: Ullmanns Encyklopädie der technischen Chemie, Verlag Chemie, Weinheim 15:219Google Scholar
  39. 39.
    Graessley WW (1982) Adv Polym Sci 47:47Google Scholar
  40. 40.
    Pechhold W, von Soden W, Stoll B (1981) Makromol Chem 182:573Google Scholar
  41. 41.
    p 249 in [14]Google Scholar
  42. 42.
    Laun HM (1979) Rheol Acta 18:478CrossRefGoogle Scholar
  43. 43.
    Zosel A (1971) Kolloid-Z u Z Polymere 246:657CrossRefGoogle Scholar
  44. 44.
    Klein J et al. (1984) Rheol Acta 23:277CrossRefGoogle Scholar
  45. 45.
    Laun HM, Meißner J (1980) Rheol Acta 19:60CrossRefGoogle Scholar
  46. 46.
    Franck AP (1984) J Rheol 28:492Google Scholar
  47. 47.
    Laun HM (1986) IN: Proceedings of the 2nd Conference of European Rheologists, Prague, to appear in Rheol ActaGoogle Scholar
  48. 48.
    Cox WP, Merz EH (1958) J Polym Sci 28:619CrossRefGoogle Scholar
  49. 49.
    Pfandl W et al. (1984) Rheol Acta 23:277CrossRefGoogle Scholar
  50. 50.
    DIN 53753 (1983) ASTM 12/83Google Scholar
  51. 51.
    Zosel A (1971) Rheol Acta 10:215CrossRefGoogle Scholar
  52. 52.
    Vlachopolus J (1981) Rev Def Behav Mat 3:219Google Scholar
  53. 53.
    Uhland E (1979) Rheol Acta 18:1CrossRefGoogle Scholar
  54. 54.
    Laun HM (1982) Rheol Acta 21:464CrossRefGoogle Scholar
  55. 55.
    Fleißner M (1981) Angew Makromol Chem 94:197CrossRefGoogle Scholar
  56. 56.
    Wang J-S et al (1978) J Polym Sci, Physics 16:1709CrossRefGoogle Scholar
  57. 57.
    Wang J-S et al (1970) J Polym Sci, Letters 8:671CrossRefGoogle Scholar
  58. 58.
    Rokudai M, Fujiki T (1981) J Appl Polym Sci 26:1343CrossRefGoogle Scholar
  59. 59.
    Meißner J (1965) In: Proc IVth Int Congress on Rheology, Part 3, page 437, Interscience Publishers, New YorkGoogle Scholar
  60. 60.
    Figure 6 on page 579 in [8]Google Scholar
  61. 61.
    Münstedt H (1981) Coll & Polym Sci 259:966CrossRefGoogle Scholar
  62. 62.
    Meißner J (1975) Pure & Appl Chem 42:553Google Scholar
  63. 63.
    Münstedt H (1978) Kunststoffe 68:92Google Scholar
  64. 64.
    Montfort JP et al. (1978) Polymer 19:277CrossRefGoogle Scholar
  65. 65.
    Graessley WW, Struglinski MJ (1986) Macromolecules 19:1754CrossRefGoogle Scholar
  66. 66.
    Montfort JP, Marin G, Monge Ph (1986) Macromolecules 19:1979CrossRefGoogle Scholar
  67. 67.
    Graessley WW (1982) Macromolecules 15:1164CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  • H. M. Laun
    • 1
  1. 1.KunststofflaboratoriumBASF AktiengesellschaftLudwigshafen am RheinF.R.G.

Personalised recommendations