Skip to main content

Evolution of rheology during chemical gelation

  • Transient Networks
  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 75))

Abstract

Rheology is a sensitive measure of the evolving molecular structure in a crosslinking polymer. Dynamic mechanical experiments in small amplitude oscillatory shear give the storage modulus G′(ω, p) and the loss modulus G″(ω, p) as a function of frequency ω. The extent of crosslinking, p(t), changes with reaction time. Dynamic mechanical experiments allow detection of the gel point (GP) and give a macroscopic description of the critical gel state (network polymer at GP). This critical gel state is used as a reference for describing the entire evolution of rheology. The most surprising discovery of these experiments was that critical gels exhibit stress relaxation in a power law, i. e. the relaxation modulus is given as G()=St −n. The relaxation exponent, n, depends on network structure. The power law behavior is an expression of mechanical self similarity (fractal behavior). The range of self similarity is defined between an upper and a lower frequency limit. The lower frequency limit (reciprocal of characteristic relaxation time) corresponds to an upper scaling length, the correlation length, which is of the order of the linear size of the largest molecular cluster (of pre-gel) or of the largest remaining percolation cluster (of post-gel). High frequencies probe relaxation within single chains. The upper frequency limit corresponds to a lower scaling length, the glass length, which is given by the dimension of the molecular network units responsible for glassy behavior. The correlation length and, hence, the characteristic relaxation time increase in the approach of the gel point, diverge to infinity at the gel point, and then decrease again with increasing extent of crosslinking. The critical gel has no characteristic length or time scale. All observations are restricted to polymers at a temperature above the glass transition temperature and at frequencies much below the glass frequency.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam M, Delsanti M Durand D (1985) Macromolecules 18:2285

    Article  CAS  Google Scholar 

  2. Apicella A, Masi P, Nicolais L (1984) Rheol Acta 23:291

    Article  CAS  Google Scholar 

  3. ASTM D 1638-74

    Google Scholar 

  4. Bird RB, Armstrong R, Hassager O (1977) Dynamics of Polymeric Liquids, J Wiley, New York

    Google Scholar 

  5. Bistrup SA (1986) PhD Thesis, University Minnesota

    Google Scholar 

  6. Castro JM, Macosko CW, Perry SJ (1984) Polym Com 25:82

    CAS  Google Scholar 

  7. Clerc CP, Tremblay AMS, Albinet G, Mitescu CD (1984) J Phys Lett 45:L913

    Article  Google Scholar 

  8. Clerc CP, Gireau G, Laugier JM, Luck JM (1985) J Phys A 18:2565

    Article  Google Scholar 

  9. Chambon F, Winter HH (1985) Polym Bull 13:499

    Article  CAS  Google Scholar 

  10. Chambon F, Petrovic ZS, MacKnight W, Winter HH (1986) Macromolecules 19:2146

    Article  CAS  Google Scholar 

  11. Chambon F, Winter HH (1987) J Rheol 31:683

    Article  CAS  Google Scholar 

  12. Chambon F (1986) Ph D Thesis, University Massachusetts

    Google Scholar 

  13. de Gernes PG (1979) Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York

    Google Scholar 

  14. Farris RJ, Lee C (1983) Polym Eng Sci 23:586

    Article  CAS  Google Scholar 

  15. Ferry JD (1980) Viscoelastic Properties of Polymers, J Wiley, New York

    Google Scholar 

  16. Fisher A, Gottlieb M (1986) Proc of Networks 86, Elsinore Denmark, Aug 1986

    Google Scholar 

  17. Flory PJ (1941) J Am Chem Soc 63:3083, 3091, 3096

    Article  CAS  Google Scholar 

  18. Flory PJ (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York

    Google Scholar 

  19. Gordon M (1962) Proc R Soc, London Ser A 268:240

    Article  CAS  Google Scholar 

  20. Harran D, Laudouard A (1986) J Appl Polym Sci

    Google Scholar 

  21. Lipshitz S, Macosko CW (1976) Polym Eng Sci 16:803

    Article  CAS  Google Scholar 

  22. Macosko CW, Miller DR (1976) Macromolecules 9:199, 206; (1979) Polym Eng Sci 19:272

    Article  CAS  Google Scholar 

  23. Macosko CW, Saam JC (1986) The Hydrosilation Cure of Polyisobutene, to be published

    Google Scholar 

  24. Muthukumar M (1985) J Chem Phys 83:3161

    Article  CAS  Google Scholar 

  25. Muthukumar M, Winter HH (1986) Marcromolecules 19:1284

    Article  CAS  Google Scholar 

  26. Stanley HE (1985) Introduction of Phase Transition and Critical Phenomena, 2nd Ed, Oxford University Press, New York

    Google Scholar 

  27. Stauffer D, Coniglio A, Adam M (1982) Adv Polym Sci 44:74

    Google Scholar 

  28. Stockmayer WH (1943) J Chem Phys 11:45; (1944) 12:125

    Article  CAS  Google Scholar 

  29. Winter HH, Chambon F (1986) J Rheol 30:367

    Article  CAS  Google Scholar 

  30. Winter HH, Morganelli P, Chambon F (1987) Macromolecules, submitted

    Google Scholar 

  31. Winter HH (1987) Polym Eng Sci, Dec 1987, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Winter, H.H. (1987). Evolution of rheology during chemical gelation. In: Permanent and Transient Networks. Progress in Colloid & Polymer Science, vol 75. Steinkopff. https://doi.org/10.1007/BFb0109413

Download citation

  • DOI: https://doi.org/10.1007/BFb0109413

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0725-8

  • Online ISBN: 978-3-7985-1696-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics