Skip to main content

Thermomechanics of polymer networks

  • Permanent Networks
  • Conference paper
  • First Online:
Permanent and Transient Networks

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 75))

  • 78 Accesses

Abstract

Calorimetric determinations of the total energy exchange in polymer networks provide information about both thermodynamic and molecular quantities characterizing the deformation process and, therefore, have a fundamental importance in investigating rubber elasticity. The thermomechanical behaviour of the chemically crosslinked polymer networks, filled networks, rubberlike thermoelastoplastics and crystalline networks are discussed. Thermomechanics of the crosslinked networks is considered from the point of view of the interchain entropy and energy contributions to the free energy of deformation and the temperature coefficient of the unperturbed chain dimensions. The comparison with the results obtained on isolated macromolecules demonstrates that the classical Gaussian theory of rubber elasticity quantitatively predicts the intrachain entropy and energy contributions at simple deformations of the networks and their independence of the deformation (at small and moderate deformations). The interchain changes of internal energy, vibrational entropy and volume resulting form the deformation are also considered and it has been concluded that they support the theory only at small deformations. Analysis of the entropy and energy effects resulting from the simple extension of the stress-softened networks filled with different fillers shows that, in many cases, the entropy and energy contributions are dependent on the concentration of the fillers, which contradicts the classical theory of rubber elasticity. Some reasons for the dependence are considered. Thermomechanical studies of SBS ands SIS block copolymers with a hard block content of below 40 % show that the energy contributions accompanying uniaxial extension are independent of the hard block content and degree of deformation. The energy contributions for diene blocks coincide well with the results for chemically crosslinked diene networks. On the other hand, the thermomechanical behaviour of the segmented polymers with the small molecular weight of the soft blocks and the large content of the hard block is determined not only by intrachain conformational changes but by intermolecular changes, both in the soft and hard blocks. Some possible deformation mechanisms which lead to such thermomechanical behaviour are considered. Although it is widely accepted that the free energy of the uniaxial deformation of the two-phase crystalline networks is purley intrachain, our calorimetric investigations show that the thermodynamics of the deformation of these networks is controlled by interchain changes in the amorphous regions. To support this conclusion some thermomechanical results for oriented and unoriented crystalline networks are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flory PJ (1953) Principles of Polymer Chemistry, Ithaca

    Google Scholar 

  2. Treloar LRG (1975) The Physics of Rubber Elasticity, 3 Ed, Clarendon Press, Oxford

    Google Scholar 

  3. Mark JE (1973) Rubber Chem Technol 46:593; (1976) J Polym Sci Macromol Rev 11:135

    CAS  Google Scholar 

  4. Müller FH (ed) (1969) Thermodynamics of Deformation, Calorimetric Investigation of Deformation Processes, Rheology 5, Academic Press, New York, p 417

    Google Scholar 

  5. Godovsky YK, Slonimsky GL, Alekseev VF (1969) Vysokomol Soedin A11:1181

    Google Scholar 

  6. Godovsky YK (1986) Adv Polym Sci 76:31

    Google Scholar 

  7. Price C (1976) Proc R Soc Ser A 351:331

    Article  CAS  Google Scholar 

  8. Flory PJ, Hoeve CAJ, Ciferri A (1959) J Polym Sci 34:337

    Article  CAS  Google Scholar 

  9. Godovsky YK (1981) Polymer 22:75

    Article  Google Scholar 

  10. Krigbaum WR, Roe R-J (1965) Rubber Chem Technol 38:1039

    CAS  Google Scholar 

  11. Shen M, Kroucher M (1975) J Macromol Sci C12:287

    CAS  Google Scholar 

  12. Allen G et al (1971) Trans Farad Soc 67:1278

    Article  CAS  Google Scholar 

  13. Treloar LRG (1978) Polymer 19:1414

    Article  CAS  Google Scholar 

  14. Kilian H-G (1980) Coll & Polym Sci 258:489; (1981) 259:1084

    Article  CAS  Google Scholar 

  15. Galanti AV, Sperling L (1970) Polym Eng Sci 10:177

    Article  CAS  Google Scholar 

  16. Papkov VS et al (1975) Mechan Polym N3:387

    Google Scholar 

  17. Zapp RL, Guth E (1951) Ind Eng Chem 43:430

    Article  CAS  Google Scholar 

  18. Oono R, Ikeda H, Todani I (1971) Angew Makromol Chem 46:47

    Google Scholar 

  19. Romanov A, Marcincin K, Jehlar P (1982) Acta Polym 33:218

    Article  CAS  Google Scholar 

  20. Godovsky YK, Bessonova NP, Guzeev W (1983) Mechan Polym N4:605

    Google Scholar 

  21. Godovsky YK, Bessonova NP, Konjuchova EV, Tarasov SG (1984) Book of preprints, Vol A2, paper A48, Rubber 84, Moscow

    Google Scholar 

  22. Krigbaum WR, Roe RJ, Smith KJ (1964) Polymer 5:533

    Article  CAS  Google Scholar 

  23. Lohse DJ, Gaylord RJ (1978) Polym Eng Sci 18:512

    Article  CAS  Google Scholar 

  24. Heise B, Kilian H-G, Pietralla M (1977) Progr Coll & Polym Sci 62:16

    Article  CAS  Google Scholar 

  25. Morbitzer L, Hentze G, Bonart R (1967) Kolloid Z Z Polym 216–217:137

    Article  Google Scholar 

  26. Schmid JBM, Wohlrab J, Goritz D (1986) Coll & Polym Sci 264:236

    Article  CAS  Google Scholar 

  27. Kilian H-G (1982) Coll & Polym Sci 260:895

    Article  CAS  Google Scholar 

  28. Godovsky YK (1982) Coll & Polym Sci 260:461

    Article  Google Scholar 

  29. Christensen RC, Hoeve CAT (1970) J Polym Sci A1, 8:1503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Godovsky, Y.K. (1987). Thermomechanics of polymer networks. In: Permanent and Transient Networks. Progress in Colloid & Polymer Science, vol 75. Steinkopff. https://doi.org/10.1007/BFb0109411

Download citation

  • DOI: https://doi.org/10.1007/BFb0109411

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0725-8

  • Online ISBN: 978-3-7985-1696-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics