Advertisement

General deformation modes of a van der Waals network

  • H. F. Enderle
  • H. -G. Kilian
Permanent Networks
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 75)

Abstract

It is shown how multiaxial deformation modes can be described with the aid of a generalized van der Waals network model. By introducing the modified invariant J=βI1 + (1 −β)I2 the resulting van der Waals strain energy function allows in the case of biaxial homogeneous deformation to derive a set of equations of state. The calculated normal forces can be fitted to uniaxial elongation and compression experiments on the one hand and to data of general biaxial deformation modes on the other hand up to largest measures of strain.

Key words

Deformation modes biaxial deformation strain energy function rubber elasticity finite extensibility Van der Waals theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adkins JE, Green AE (eds) (1970) Large Elastic Deformation, 2nd ed, Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Truesdell CA (ed) (1966) The elements of continuum mechanics, Springer, BerlinGoogle Scholar
  3. 3.a)
    Kuhn W (1936) Kolloid Z 76, 3:258CrossRefGoogle Scholar
  4. 3.b)
    Kuhn W, Grün F (1942) Kolloid Z 101:248CrossRefGoogle Scholar
  5. 4.
    Kilian H-G (1981) Polymer 22:209CrossRefGoogle Scholar
  6. 5.
    James HM, Guth E (1947) J Chem Phys 15:669CrossRefGoogle Scholar
  7. 6.
    Vilgis Th (1984) Ph D Thesis, University of UlmGoogle Scholar
  8. 7.
    Flory PJ (ed) (1953) Principles of Polymer Chemistry, Cornell, IthakaGoogle Scholar
  9. 8.
    Treloar LRG (ed) (1975) The Physics of Rubber Elasticity, 3 rd ed, Clarendon Press, OxfordGoogle Scholar
  10. 9.
    Smith TL, Dickie RA (1969) J Polym Sci A2 7:635CrossRefGoogle Scholar
  11. 10.
    Rivlin RS (1948) Phil Trans R Soc A241:379Google Scholar
  12. 11.
    Truesdell CA, Toupin RA (eds) (1966) The Classical Field Theories, Handbuch der Physik III/1, Springer BerlinGoogle Scholar
  13. 12.
    Vilgis Th, Kilian H-G (1986) Coll & Polym Sci 264:137CrossRefGoogle Scholar
  14. 13.
    Kilian H-G, Schenk H, Wolff W (19??) to be publishedGoogle Scholar
  15. 14.
    Larson RG, Monroe K (1984) Rheol Acta 23:10CrossRefGoogle Scholar
  16. 15.
    Kilian H-G, Vilgis Th, Enderle HF (1984) Coll & Polym Sci 262:696CrossRefGoogle Scholar
  17. 16.
    Flory PJ (1985) Polym J 17:1CrossRefGoogle Scholar
  18. 17.
    Kilian H-G, Unseld K, Enderle HF (1986) Coll & Polym Sci 264:866CrossRefGoogle Scholar
  19. 18.
    Dusek K, Prins W (1969) Adv Polym Sci 6:1–102CrossRefGoogle Scholar
  20. 19.
    Rivlin RS, Saunders DW (1951) Phil Trans R Soc A243:251Google Scholar
  21. 20.
    Kawabata S (1973) J Macromol SciB8 3:605CrossRefGoogle Scholar
  22. 21.
    Kawabata S, Matsuda M, Tei K, Kawai H (1981) Macromolecules 14:154CrossRefGoogle Scholar
  23. 22.
    Pak H, Flory PJ (1979)J Polym Sci Polym Phys Ed 17:1845CrossRefGoogle Scholar
  24. 23.
    Pietralla M (1982) Habilitationsschrift, UlmGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  • H. F. Enderle
    • 1
  • H. -G. Kilian
    • 1
  1. 1.Abteilung Experimental-PhysikUniversität UlmUlmF.R.G.

Personalised recommendations