Advertisement

Stress-strain behaviour of model networks in uniaxial tension and compression

  • W. Oppermann
  • N. Rennar
Permanent Networks
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 75)

Abstract

Elasticity measurements performed on well-defined poly(dimethylsiloxane) networks (PDMS) reveal that there is a direct proportionality between the small-strain modulus, G, and the chemical network density, vch, only at high network densities, whereas G is quite constant and in the order of the plateau modulus, G N o , at low network densities. This indicates that topological interactions, e. g. entanglements, contribute to the modulus in a certain range of network densities.

PDMS networks haying well-defined topologies were prepared by endlinking fractionated PDMS chains (¯ M n ranging from 2000 to 62000 g mol−1) with a pentafunctional cyclic siloxane. Generally, the sol fraction of the samples was below 1.5% suggesting that the crosslinking reaction was quite complete.

Stress-strain isotherms in uniaxial tension and compression were measured at 333 K for these networks utilizing only one specimen in the same apparatus for the whole deformation range covered. At small and medium deformations, the reduced stress increases monotonically as a function of reciprocal elongation when going from extension to compression. A maximum in the Mooney-Rivlin plot may occur, if at all, in the compression range at λ ≦ 0.7, in qualitative accord with some theoretical approaches.

Key words

Rubber elasticity model networks Mooney-Rivlin plot entanglements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flory PJ (1977) J Chem Phys 66:5720CrossRefGoogle Scholar
  2. 2.
    Langley NR (1968) Macromol 1:348CrossRefGoogle Scholar
  3. 3.
    Dossin LM, Graessley WW (1979) Macromol 12:123; Graessley WW (1982) Adv Polym Sci 47:67CrossRefGoogle Scholar
  4. 4.
    Heinrich G, Straube E, Helmis G (1979) Plaste u Kautschuk 26:561Google Scholar
  5. 5.
    Flory PJ, Erman B (1982) Macromol 15:800, 806CrossRefGoogle Scholar
  6. 6.
    Edwards SF (1977) Brit Polym J 9:140CrossRefGoogle Scholar
  7. 7.
    Marrucci G (1981) Macromol 14:434CrossRefGoogle Scholar
  8. 8.
    Schwarz J (1981) Polym Bull 5:151, 478Google Scholar
  9. 9.
    Kilian H-G (1983) Kautsch Gummi Kunstst 36:959; Kilian H-G Enderle HF, Unseld K (1986) CoU & Polym Sci 264:866Google Scholar
  10. 10.
    Treloar LRG (ed) (1975) The Physics of Rubber Elasticity, University Press, OxfordGoogle Scholar
  11. 11.
    Dusek K, Prins W (1969) Adv Polym Sci 6:1CrossRefGoogle Scholar
  12. 12.
    Kuhn W (1934) Kolloid-Z 68:2; Kuhn W (1936) ibid 76:258CrossRefGoogle Scholar
  13. 13.
    Hermans JJ (1947) Trans Farad Soc 43:591CrossRefGoogle Scholar
  14. 14.
    Flory PJ (1950) J Chem Phys 18:108CrossRefGoogle Scholar
  15. 15.
    Wall FT, Flory PJ (1951) J Chem Phys 19:1435CrossRefGoogle Scholar
  16. 16.
    Duiser JA, Staverman AJ (1965) In: Prins JA (ed) Physics of Non-Crystalline Solids, North-Holland Pub Co, Amsterdam, p 376Google Scholar
  17. 17.
    Graessley WW (1975) Macromol 8:186CrossRefGoogle Scholar
  18. 18.
    Edwards SF (1971) In: Chompff AJ, Newman S (eds) Polymer Networks, Structure and Mechanical Properties, Plenum Press, New York, p 83Google Scholar
  19. 19.
    Rivlin RS (1947) J Appl Phys 18:444CrossRefGoogle Scholar
  20. 20.
    Mooney M (1940) J Appl Phys 11:582; Mooney M (1948) ibid 19:434CrossRefGoogle Scholar
  21. 21.
    Ferry JD (ed) (1980) Viscoelastic Properties of Polymers, 3rd ed, Wiley, New YorkGoogle Scholar
  22. 22.
    Ronca G, Allegra G (1975) J Chem Phys 63:4990CrossRefGoogle Scholar
  23. 23.
    Mark JE, Sullivan JL (1977) J Chem Phys 66:1006CrossRefGoogle Scholar
  24. 24.
    Llorente MA, Mark JE (1980) Macromol 13:681CrossRefGoogle Scholar
  25. 25.
    Kosfeld R, Heß M, Hansen D (1980) Polym Bull 3:603CrossRefGoogle Scholar
  26. 26.
    Valles EM, Macosko CW (1979) Macromol 12:673CrossRefGoogle Scholar
  27. 27.
    Macosko CW, Benjamin GS (1981) Pure Appl Chem 53:1505Google Scholar
  28. 28.
    Granick S, Pedersen S, Nelb GW, Ferry JD, Macosko CW (1981) Polym Sci Polym Phys Ed 19:1745CrossRefGoogle Scholar
  29. 29.
    Meyers KO, Bye ML, Merrill EW (1980) Macromol 13:1045CrossRefGoogle Scholar
  30. 30.
    Gleim W, Oppermann W, Rehage G (1986) Makromol Chem 187:1273CrossRefGoogle Scholar
  31. 31.
    Oppermann W, Rehage G (1981) CoU & Polym Sci 259:1177CrossRefGoogle Scholar
  32. 32.
    Oppermann W, Rose S, Rehage G (1985) Brit Polym J 17:175CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  • W. Oppermann
    • 1
  • N. Rennar
    • 1
  1. 1.Institut für Physikalische Chemie der TU ClausthalClausthal-ZellerfeldF.R.G.

Personalised recommendations