Formation, structure and elasticity of model imperfect networks prepared by endlinking

  • M. Ilavský
  • K. Dušek
Permanent Networks
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 75)


The extraction, viscoelastic, equilibrium mechanical and optical behaviour of polyurethane (prepared from poly (oxypropylene) triols-diisocyanate-monofunctional alcohol or monoisocyanate m the dry or dilute states) and epoxy (prepared from diamine-diepoxide and monoepoxide) networks has been analysed. In all cases, the theory of branching processes adequately describes the network formation and the weight fraction of sol W s. The networks are homogeneous and their viscoelastic behaviour has a model character. The equilibrium deformational behaviour of polyurethane networks indicates the presence of an entanglement contribution in the experimental modulus Gr. The Gr values can be adequately described by the theory of branching processes with the chemical, G c and the topological, Gent, contribution to both systems. The deformational behaviour of epoxy networks, however, can also be adequately described by the theory with the front factor A=1, without the entanglement contribution.

Key words

Formation of networks equilibrium modulus solfraction polyurethane networks epoxy networks concentration of elastically active network chains retardation spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dušek K (1985) Brit Polym J 17:185CrossRefGoogle Scholar
  2. 2.
    Dušek K (1986) Adv Polym Sci 78:1CrossRefGoogle Scholar
  3. 3.
    Flory PJ (1979) Polymer 20:1317CrossRefGoogle Scholar
  4. 4.
    Erman B, Wagner W, Flory PJ (1980) Macromolecules 13:1554CrossRefGoogle Scholar
  5. 5.
    Kilian HG (1981) Polymer 22:209CrossRefGoogle Scholar
  6. 6.
    Kilian HG (1985) Coll & Polym Sci 263:30CrossRefGoogle Scholar
  7. 7.
    Langley NR, Polmanteer KE (1974) J Polym Sci Polym Phys Ed 12:1023CrossRefGoogle Scholar
  8. 8.
    Pearson DS, Graessley WW (1980) Macromolecules 13:1001CrossRefGoogle Scholar
  9. 9.
    Heinrich G, Straube E (1983) Acta Polymerica 34:589CrossRefGoogle Scholar
  10. 10.
    Ilavský M, Dušek K (1983) Polymer 24:981CrossRefGoogle Scholar
  11. 11.
    Ilavský M, Dušek K (1986) Macromolecules 19:2093CrossRefGoogle Scholar
  12. 12.
    Allen G, Egerton P, Walsh DJ (1976) Polymer 17:65CrossRefGoogle Scholar
  13. 13.
    Wals DJ, Higgins JS, Hall RH (1979) Polymer 20:951CrossRefGoogle Scholar
  14. 14.
    Stanford JL, Stepto RFT (1977) Br Polym J 124:121Google Scholar
  15. 15.
    Stepto RFT (1979) Polymer 20:1324CrossRefGoogle Scholar
  16. 16.
    Sung PH, Mark JE (1981) J Polym Sci Polym Phys Ed 19:507CrossRefGoogle Scholar
  17. 17.
    Mark JE, Sung PH (1980) Eur Polym J 16:1223CrossRefGoogle Scholar
  18. 18.
    Macosko CW, Benjamin GS (1981) Pure Appl Chem 53:1505Google Scholar
  19. 19.
    Dušek K, Ilavský M (1983) J Polym Sci Polym Phys Ed 21:1323CrossRefGoogle Scholar
  20. 20.
    Ilavský M, Bogdanova EM, Dušek K (1984) J Polym Sci Polym Phys Ed 22:265CrossRefGoogle Scholar
  21. 21.
    Dušek K (1984) Macromolecules 17:716CrossRefGoogle Scholar
  22. 22.
    Ilavský M, Dušek K (1982) Polym Bull 8:359Google Scholar
  23. 23.
    Havránek A, Nedbal J, Berčík Č, Ilavský M, Dušek K (1980) Polym Bull 3:497CrossRefGoogle Scholar
  24. 24.
    Havránek A, Ilavský M, Nedbal J, Böhm M, Soden WV, Stoll B (1987) Coll & Polym Sci 265:8CrossRefGoogle Scholar
  25. 25.
    Dušek K, Ilavský M, Matějka L (1984) Polym Bull 12:33CrossRefGoogle Scholar
  26. 26.
    Ilavský M, Bouchal K, Dušek K (1985) Polym Bull 14:295Google Scholar
  27. 27.
    Dušek K, Vojta V (1977) Br Polym J 9:164CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  • M. Ilavský
    • 1
  • K. Dušek
    • 1
  1. 1.Institute of Macromolecular ChemistryCzechoslovak Academy of SciencesPragueCzechoslovakia

Personalised recommendations