Advertisement

Die Physik des photographischen Prozesses

Physical problems of the photographic process

  • Eberhard Klein
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 8)

Abstract

A survey is given the physical principles of modern photographic processes which still involve to a great extent silver halide photography. Depending on the exposure conditions a certain distribution of illuminating intensity exists at the surface of the photographic layer. Due to absorption and scattering this intensity distribution is changed in the interior of the layer. Several recent investigations establish the relation between some macroscopic properties (as transparency and reflectance) and the optical properties of silver halide.

Upon absorption of a few (about 4–6) light quanta a significant and usually stable change of the crystal properties tapes place. This change, which is due to the formation of latent image centres, catalyzes the reduction of the crystal in a solution containing a reducing agent (developer).

A discussion of the mechanism of latent image formation considers some new advances in silver halide research, as e.g. foundary layer effects. This so—called chemical ripening canses the formation of traps for electrons and positive holes in the crystal. Experimental as well as theoretical investigations of the kinetics and topography of ripening centre formation and of the action of such centres lead to a deep and nearly complete insight into latent image formation and into the mechanisms of special effects as e.g. solarization, and reciprocity failene. The development of the exposed crystal which involves a number of transport phenomena in the crystal may be thermodynamically discussed as a continuation of the photolytic latent image formation. Finally it is shown that the known properties of the silver halide micro crystals can be used for a theoretical evaluation of the shape of the characteristic curve.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu III

  1. [1]
    Mie, G., Ann. Physik 25, 377 (1908)CrossRefADSGoogle Scholar
  2. [2]
    Van de Hulst, H. C., Light Scattering by Small Particles, New York 1957.Google Scholar
  3. [3]
    Metz, H. J. und Dettmar, H.K., Kolloid-Z. und Z. Polymere 192, 107, (1963).CrossRefGoogle Scholar
  4. [4]
    Moisar, E. und Klein, E., Ber. Bunsenges. Phys. Chemie 67, 999 (1963).Google Scholar
  5. [5]
    Metz, H. J., Phot. Korr. 99, 153 (1963).Google Scholar
  6. [6]
    Metz, H. J., Diplomarbeit, Inst. f. Wiss. Photogr. d. Th. München (1964).Google Scholar
  7. [7]
    De Belder, M., De Kerf, J., Jespers, J. und Verbrugghe, R., J. Opt. Soc. Am. 55, 1261 (1965).ADSCrossRefGoogle Scholar
  8. [8]
    Metz, H. J.,— in Vorbereitung.Google Scholar
  9. [9]
    Frieser, H., Kinotechnik 17, 167 (1935), Phot. Korr. 91, 69 (1955).Google Scholar

Literatur zu IV

  1. [1]
    Frieser, H. und Klein, E., Phot. Sci. Eng. 4, 264 (1960).Google Scholar
  2. [2]
    Farnell, G. C. und Chanter, J. B., J. Phot. Sci., 9, 73 (1961).Google Scholar
  3. [3]
    Webb, J. H., J. opt. Soc. Am. 38, 27 (1948).ADSCrossRefGoogle Scholar
  4. [4]
    Zeitler, E., Mitt. a. d. Forschungslaboratorien der Agfa Leverkusen-München, Bd. II, 148 (1958).Google Scholar

Literatur zu V

  1. [1]
    Klein, E. und Moisar, E., Ber. Bunsenges. phys. Chemie 67 (1963) 349.Google Scholar
  2. [2]
    Moisar, E. und Klein, E., Ber. Bunsenges phys. Chemie, 67 (1963) 949.Google Scholar
  3. [3]
    Ottewill, R. H. und Woodbridge, R. F., J. Coll. Sci. 16 (1961) 581.CrossRefGoogle Scholar
  4. [4]
    Berry, C. R., Marino, S. J. und Ostei, C. F. Phot. Sci. Eng. 5 (1961) 332.Google Scholar
  5. [5]
    Markocki, W. und Romer, W., Korpuskularphotographie IV, Hersg. Frieser, H. und Heimann, G., München (1963) 149.Google Scholar
  6. [6]
    Stranski, I. N., VDI-Berichte 20 (1957) 5.Google Scholar
  7. [7]
    Knacke, O. und Stranski, I. N., Zt. Elektrochemie 60, (1956) 816.Google Scholar
  8. [8]
    Beniman, R. W. und Herz, R. H., Nature 180 (1957) 293.CrossRefADSGoogle Scholar
  9. [9]
    Hamilton, J. F. und Brady, L. E., J. Appl. Phys. 29 (1958) 994.CrossRefADSGoogle Scholar
  10. [10]
    Klein, E., Metz, H. J. und Moisar E., Phot. Korresp. 99 (1963) 99.Google Scholar
  11. [11]
    Klein, E., Metz, H. J. und Moisar, E., Phot. Korresp. 100 (1964) 55.Google Scholar
  12. [12]
    Berry, C. R. und Skillman, D. C., J. Appl. Phys. 33, (1962) 1900.CrossRefADSGoogle Scholar
  13. [13]
    Berry, C. R. und Skillman, D. C., Phot. Sci. Eng. 6 (1962) 159.Google Scholar

Literatur zu VI

  1. [1]
    Waidelich, W., Photogr. Korrespondenz 98 (1962) 30.Google Scholar
  2. [2]
    Waidelich, W. und Fuchs, W., Wiss. phot. Kolloquium Zürich (1961), Focal Press, London (1963).Google Scholar
  3. [3]
    Korhonen, U. und Linkoaho, M., Ann. Acad. Sci. Fenn, 143 (1964), 4.Google Scholar
  4. [4]
    Korhonen, U. und Linkoaho, M., Ann. Acad. Sci. Fenn. 195 (1966) 3.Google Scholar
  5. [5]
    Vogel, E., Dissertation TH Darmstadt (1965) „Die Elektronendichte im Silberbromid”.Google Scholar
  6. [6]
    Klein, E., Phot. Korrespondenz 92, (1956) 139.Google Scholar

Literatur zu VII

  1. [1]
    Lehfeldt, W., Z. f. Physik 85 (1933) 717.CrossRefADSGoogle Scholar
  2. [2]
    Lehfeldt, W., Nachr. Ges. Wiss. Göttingen, math. phys. Kl. (1933), 263 und (1935) 171.Google Scholar
  3. [3]
    Matejec, R., Z. f. Physik 148 (1957) 454.CrossRefADSGoogle Scholar
  4. [4]
    Müller, P., Phys. status solidi 9 (1965) 193 und 12 (1965) 775.CrossRefGoogle Scholar
  5. [5]
    Wagner, C., Z. f. physik. Chem. B 21 (1933) 25 und B 32 (1936) 447.Google Scholar
  6. [6]
    Koch, E. und Wagner, C., Z. f. phys. Chem 38 (1938) 295.Google Scholar
  7. [7]
    Teltow, J., Ann. d. Physik 6/5 (1950), 63, 71.Google Scholar
  8. [8]
    Teltow, J., Z. f. physikal. Chemie 195 (1950), 197, und 213.Google Scholar
  9. [9]
    Ebert, I. und Teltow, J., Ann. d. Physik 15 (1955) 268.CrossRefADSGoogle Scholar
  10. [10]
    Wagner, C., Ber. d. Bunsenges. 63 (1959) 1027.Google Scholar
  11. [11]
    Teltow, J., Z. f. physikal. Chem. 195 (1950) 213.Google Scholar
  12. [12]
    Stasiw, O., Elektronen-und Ionenprozesse in Ionenkristallen, Springer-Verlag Berlin-Göttingen, Heidelberg (1959).Google Scholar

Literatur zu VIII

  1. [1]
    Gurney, R. W. und Mott, N. F., Proc. Roy. Soc. London A 164 (1938) 151.ADSCrossRefGoogle Scholar
  2. [2]
    Matejec, R., Z. f. Elektrochem. 66 (1962) 459.Google Scholar
  3. [3]
    Matejec, R., Phot. Korresp. 102/9 (1966) 138.Google Scholar
  4. [4]
    Webb, J. H., J. appl. Physics 26 (1955) 3109 und Sci. ind. phot. 27 (1956) 98.CrossRefGoogle Scholar
  5. [5]
    Webb, J. H., Hamm, F. A., Hamilton, J. F. und Brady, L. E., Wiss. phot. Konferenz Köln (1956) O. Helwich Verlag, Darmstadt (1958).Google Scholar
  6. [6]
    Klein, E. und Matejec, R., Naturwiss. 46 (1959) 225; Z. f. Elektrochem. 63 (1959) 883.CrossRefADSGoogle Scholar
  7. [7]
    Matejec, R., Naturwiss. 48 (1961) 619.CrossRefADSGoogle Scholar

Literatur zu IX

  1. [1]
    Okamoto, Y., Nachr. Akad. Wiss. Göttingen math. phys. Kl. IIa 14 (1956) 275.Google Scholar
  2. [2]
    Meinig, K., Metz, J. und Teltow, J., Phys. stat. solidi 2 (1962) 1556.CrossRefADSGoogle Scholar
  3. [3]
    Bassani, F., Knox, R. S. und Fowler, W. B., Phys. Rev. 137 (1965) A 1217.CrossRefADSGoogle Scholar
  4. [4]
    Jung, L., Z. f. Physik 146 (1956) 479.CrossRefADSGoogle Scholar
  5. [5]
    Jeltsch, E., Z. f. Physik 154 (1959) 613.CrossRefADSGoogle Scholar
  6. [6]
    Stasiw, O., Halbleiter und Phosphore 3 (1958) 306, Vieweg, Braunschweig.Google Scholar
  7. [7]
    Jung, L., Stasiw, O. und Teltow, J., Z. f. physikal. Chemie, 198 (1951) 186.Google Scholar
  8. [8]
    Koswig, H. D. und Stasiw, O., Z. wiss. Phot. 51 (1956) 157.Google Scholar
  9. [9]
    Moser, F. und Urbach, F., Phys Rev. 106 (1957) 852.CrossRefADSGoogle Scholar
  10. [10]
    Meyer, R., Phot. Korresp. 57 (1959) 57.Google Scholar
  11. [11]
    Meyer, R., Z. wiss. Phot. 53 (1959) 141.Google Scholar
  12. [12]
    Koswig, H. D., Z. f. Naturforschung 16a(1961) 1103.ADSGoogle Scholar
  13. [13]
    Stasiw, O., Elektronen-und Ionenprozesse in Ionenkristallen, Springer-Verlag, Berlin-Göttingen, Heidelberg (1959).Google Scholar

Literatur zu X

  1. [1]
    Stern, O., Z. f. Elektrochem. 30 (1924) 508.Google Scholar
  2. [2]
    Matejec, R. und Meyer, R., Z. f. physikal. Chem. N. F. 49 (1966) 240.Google Scholar
  3. [3]
    Matejec, R. und Meyer, R., Z. f. physikal. Chem. N. F. 55 (1967) 87.Google Scholar
  4. [4]
    Kliewer, L., J. Phys. Chem. Solids 27, 705, (1966).CrossRefADSGoogle Scholar
  5. [5]
    Matejec, R. und Meyer, R., Z. f. physikal. Chem. N. F. 55 (1967) 94.Google Scholar
  6. [6]
    Matejec, R., Z. f. Elektrochem 66, 326 (1962).Google Scholar
  7. [7]
    Meyer, R., Matejec, R. und Kaufhold, G., Z. f. physikal. Chem. N. F. (1968) im Druck.Google Scholar
  8. [8]
    Kluge, J., Stasiw, O. und Süptitz, P., Z. Physik 160, (1960) 363.CrossRefADSGoogle Scholar
  9. [9]
    Malinowski, J., Contemp. Physics, 8 (1967) 285.CrossRefADSGoogle Scholar
  10. [10]
    Moisar, E., J. phot. Science 13 (1965) 46.Google Scholar

Literatur zu XI

  1. [1]
    Moisar, E. und Wagner, S., Ber. Bunsenges. 67 (1963) 356.Google Scholar
  2. [2]
    Moisar, E., J. phot. Sci. 13 (1965) 46.Google Scholar
  3. [3]
    Moisar, E., Ber. Bunsenges., im Druck.Google Scholar
  4. [4]
    Spracklen, D.M., J. phot. Sci. 14 (1966) 220.Google Scholar
  5. [5]
    Moisar, E., J. phot. Sci. 14 (1966) 181.Google Scholar
  6. [6]
    Peelaers, W. und Claes, F., Phot. Korr. 103 (1967) 101Google Scholar
  7. [7]
    Metz, H. J., unveröffentlicht.Google Scholar

Literatur zu XII Zusammenfassende Artikel zur spektralen Sensibilisierung

  1. [1]
    Horwitz, L., Phot. Sci. Techn. 1 (1954), 43.Google Scholar
  2. [2]
    Dickinson, O., J. Phot. Sci. 2 (1954), 50.Google Scholar
  3. [3]
    Wolff, H., Fortschritt chem. Forschung 3/3 (1955), 503.CrossRefGoogle Scholar
  4. [4]
    Brünner, R., Oberth, A. und Scheibe, G., Z. wiss. Phot. 50 (1955), 283.Google Scholar
  5. [5]
    Dörr, F., Umschau (1960), 588.Google Scholar
  6. [6]
    West, W., Wiss. Phot. Konferenz Zürich, 1961.Google Scholar
  7. [7]
    Carroll, B.H., Phot. Sci. Eng. 5 (1961), 65.Google Scholar
  8. [8]
    Terenin, A. und Akimov, I., Z. phys. Chem. (Leipzig. Ausg.) 217 (1961), 307.Google Scholar
  9. [9]
    Klein, E. und Matejec., R., Photogr. Korrespondenz 101 (1965), 3 und Mitt. d. Agfa-Gevaert AG, Leverkusen-München 4 (1964), 16.Google Scholar

Originalarbeitern

  1. [10]
    Okamoto, Y., Nachr. Akad. Wiss. Göttingen math. phys. Kl. IIa, 14 (1956), 275.Google Scholar
  2. [11]
    Scheibe, G., Z. f. Angew. Chem. 50 (1937), 212 und 52 (1939), 631.CrossRefGoogle Scholar
  3. [12]
    Günther, E. und Moisar, E., J. Phot. Sci. 13 (1956), 280.Google Scholar
  4. [13]
    Meier, H., Z. f. Elektrochem. 58 (1954), 859, 59 (1955), 1029, 63 (1959), 971.Google Scholar
  5. [14]
    Meier, H., Z. wiss. Phot. 50 (1955), 301, 51 (1956), 208, 53 (1958), 1.Google Scholar
  6. [15]
    Dörr, F. und Scheibe, G., Z. wiss. Phot. 55 (1961), 133.Google Scholar
  7. [16]
    Förster, Th., Naturwiss 33 (1946), 166, Ann. d. Physik 2 (1948)., 55, Z. f. Elektrochem. 64 (1960), 157.CrossRefADSGoogle Scholar
  8. [17]
    Lipsett, F.R., Energy transfer in Polyacence solid solutions. Nat. Res. Comp. Canada (1957).Google Scholar
  9. [18]
    Schmillen, A., Halbleiter u. Phosphore, Vieweg Verl. Braunschweig (1958) 445, Z. f. Physik 135 (1953), 294 und 150 (1958) 123.Google Scholar
  10. [19]
    Zwick, M.M. und Kuhn, H., Z. f. Naturforschung 17a (1962) 411.ADSGoogle Scholar
  11. [20]
    Drexhage, K.H., Zwick, M.M. und Kuhn H., Ber. d. Bunsenges. f. physik. Chemie 67 (1963) 497.Google Scholar

Literatur zu XIII

  1. [1]
    Mees, C.E.K. and James, T.H., The Theory of the Photographic Process, III. Edition, New York, Macmillan (1966).Google Scholar
  2. [2]
    Wagner, S., Diss. TH Aachen (1963)—Ein Beitrag zum Solarisationsverhalten photographischer Silberbromidemulsionen.Google Scholar

Literatur

  1. [1]
    Klein, E. Wagner, S., Phot. Korresp., 7. Sonderheft (1965).Google Scholar
  2. [2]
    Malinowski, J., Platikamowa, W., Phys. stat. sol. 6 (1964), 885.CrossRefADSGoogle Scholar
  3. [3]
    Webb, J.H., J. opt. Soc. Am. 32 (1942), 299, 40 (1950), 3.ADSCrossRefGoogle Scholar
  4. [4]
    Hamilton, J.F., Brady, L.E., J. appl. phys. 30 (1959), 1893.CrossRefADSGoogle Scholar
  5. [5]
    Trautweiler, F., J. Phot. Sci. 11 (1963), 210, Phot. Sci. 9 (1965), 20.Google Scholar
  6. [6]
    V. d. Osten, W., Peisl, H., Waidelich, W., Congr. int. de science Photogr. Paris, 1965.Google Scholar
  7. [7]
    Klein, E., Meyer, R., Moisar, E., Wagner, S., Congr. int. de science Photogr. Paris 1965.Google Scholar

Literatur

  1. [1]
    Mees, C.E.K. und James, T.H., The Theory of the Photographic Process, III. Edition, New York, Macmillan (1966).Google Scholar
  2. [2]
    Berg, W.F. und Tomamichel, F., Phot. Korr. 99 (1963), 206.Google Scholar
  3. [3]
    Tomamichel, F., Reprographie 4 (1964), 9.Google Scholar
  4. [4]
    Berg, W.F. und Tomamichel, F., The Journal of Photographic Science, Vol. 13, S. 38, (1965).Google Scholar

Literatur

  1. [2]
    Matejec, R. und Meyer, R., Z. wiss. Phot. 57 (1963), 18.Google Scholar
  2. [3]
    Klein, E., Mitt a. d. Forschungslaboratorien d. Agfa Leverkusen-München, Bd. II, (1958), 43.Google Scholar
  3. [4]
    Meißner, H.D. und Metz, H.J., in Vorbereitung.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn GmbH, Verlag 1968

Authors and Affiliations

  • Eberhard Klein

There are no affiliations available

Personalised recommendations