Advertisement

Kristallzucht aus der Gasphase

  • Rudolf Nitsche
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 8)

Abstract

The preparation of single crystals of high purity or defined impurity contents is the basis of successful solid state research. Most crystal growth methods utilize liquid-solid phase transitions, i.e. the crystals are grown from melts or solutions. These methods cannot be applied to materials which have very high melting points, which decompose prior to melting, which sublime or for which suitable solvents do not exist. In order to fill this gap, various vapour phase methods have been developed in recent years. Whereas sublimation is confined to volatile materials, vapour phase reactions have found wide-spread application. The reactive gas mixture, yielding the solid phase, can be prepared by controlled unification of various gas streams or by chemical transport.

If carefully controlled, vapour phase methods can yield crystals of remarkable size, high chemical purity and excellent structural perfection. Apart from elements and simple binary compounds (oxides, sulfides, phosphides, arsenides), also ternary and quaternary compounds have been grown. Experimentally, two basic systems are in use:
  1. 1.

    Closed systems—usually sealed quartz ampoules—in which chemical transport takes place in a temperature gradient between a dissolution zone (T1) and a growth zone (T2). Such systems are especially suited for growing large crystals over long periods of time because they require little attention.

     
  2. 2.

    Open systems utilizing chemical transport in a flowing gas between T1 and T2 or direct unification of separate gas streams in a growth zone. This technique is especially useful for growing thin epitaxial films on orientated substrates. An additional advantage lies in the possibility of producing mixed crystals or incorporating dopants by varying the gas composition during growth.

     

This paper describes the utilization of sublimation and vapour phase reactions for growing single crystals and epitaxial layers. Various techniques are discussed and examples for important applications are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Addamiano, A., Aven, M., J. Appl. Phys. 31, 36 (1960).CrossRefADSGoogle Scholar
  2. [2]
    Greene, L. C., Reynolds, D. C., Czyzak, S. J., Baker, W. M., J. Chem. Phys. 29, 1375 (1958).CrossRefADSGoogle Scholar
  3. [3]
    Samelson, H., Brophy, V. A., J. Electrochem. Soc. 108, 150 (1961).CrossRefGoogle Scholar
  4. [4]
    Patek, K., Czech. J. Phys. B 11, 140 (1961).Google Scholar
  5. [5]
    Patek, K., Czech. J. Phys. B 12, 216 (1962).CrossRefADSGoogle Scholar
  6. [6]
    Patek, K., Skala, M., Souckova, L., Czech. J. Phys. B 12, 313 (1962).CrossRefADSGoogle Scholar
  7. [7]
    Hartmann, H., Phys. Status Sol 2, 585 (1962).CrossRefADSGoogle Scholar
  8. [8]
    Dev, I., Brit. J. Appl. Phys. 17, 761 (1966).CrossRefADSGoogle Scholar
  9. [9]
    Mita, Y., J. Phys. Soc. Japan 16, 1484 (1961).ADSCrossRefGoogle Scholar
  10. [10]
    Nitsche, R., J. Phys. Chem. Solids 17, 163 (1960), Nitsche, R., Boelsterli, H. U., Lichtensteiger, M., J. Phys. chem. Solids 21, 199 (1961).CrossRefADSGoogle Scholar
  11. [11]
    Sirtl, E., Festkörperprobleme VI, 1 (1967).Google Scholar
  12. [12]
    Schaefer, H., “Chemische Transportreaktionen”, Verlag Chemie, Weinheim 1962.Google Scholar
  13. [13]
    Effer, D., J. Electrochem. Soc. 112, 1020 (1965).CrossRefGoogle Scholar
  14. [14]
    Lynch, R. T., J. Appl. Phys. 33, 1009 (1962).CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    Frerichs, R., Phys. Rev. 72, 594 (1947).CrossRefADSGoogle Scholar
  16. [16]
    Richman, D., Tietjen, J. J., Conf. Electronic Mat., Boston (1966).Google Scholar
  17. [17]
    Linares, R. C., McGraw, R. B., J. Appl. Phys. 35, 3630 (1964).CrossRefADSGoogle Scholar
  18. [18]
    Volmer, M., “Kinetik der Phasenbildung”.—Steinkopff, Dresden und LeipzigGoogle Scholar
  19. [19]
    Kossel, W., Nachr. Ges. Wiss. Göttingen, math.-phys. Kl. 1927, 135Google Scholar
  20. [20]
    Stranski, I., Crystal Growth, Disc. Faraday Soc. (1949), Knacke, O., Stranski, I., Ergebn. Exakt. Naturwiss. XXVI, 383 (1952).Google Scholar
  21. [21]
    Volmer, M., Schultze, W., Z. phys. Chem. 156, 1 (1931).Google Scholar
  22. [22]
    Sraumanis, M., Z. phys. Chem. B 13, 316 (1931), ibid. Z. phys. Chem. B 19, 63 (1932), ibid. B 26, 246 (1934).Google Scholar
  23. [23]
    Keepin, G. R., J. Appl. Phys. 21, 260 (1950).CrossRefADSGoogle Scholar
  24. [24]
    Sakui, S., Sci. Papers Inst. phys. chem. Res. (Tokyo) 34, 1131 (1938).Google Scholar
  25. [25]
    Randall, M., Doody, T. G., J. phys. Chem. 43, 613 (1939).CrossRefGoogle Scholar
  26. [26]
    Honigmann, B., Z. Elektrochem. 58, 322 (1954).Google Scholar
  27. [27]
    Lorenz, R., Chem. Ber. 24 1509 (1891).Google Scholar
  28. [28]
    Antell, G. R., Effer, D., J. Electrochem. Soc. 106, 509 (1959).CrossRefGoogle Scholar
  29. [29]
    Nitsche, R., Fortschr. Miner. 44, 231 (1967).Google Scholar
  30. [30]
    Shiozawa, L. R., Jost, J. M., Contract AF 33 (657)-7399 Final Report ARL-65-98, May 1965.Google Scholar
  31. [31]
    DeMeis, W. M., Fischer, A. G., Mat. Res. Bull. 2, 465 (1967).CrossRefGoogle Scholar
  32. [32]
    Marley, J. A., MacEvoy, T. C., J. Appl. Phys. 32, 2504 (1961).CrossRefADSGoogle Scholar
  33. [33]
    Neuhaus, A., Recker, K., Proc. Int. Conf. Crystal Growth Boston 1966, S. 235Google Scholar
  34. [34]
    Grimmeis, H. G., Rabenau, A., Koelmans, H. J., J. Appl. Phys. 32, 2123 (1961).CrossRefADSGoogle Scholar
  35. [35]
    Scholz, H., Kluckow, R., Proc. Int. Conf. Crystal Growth, Boston, 1966, S. 475Google Scholar
  36. [36]
    Hanak, J. J., Berman, H. S., Proc. Int. Conf. Crystal Growth, Boston 1966, S. 259Google Scholar
  37. [37]
    Schaefer, P. S., J. Amer. Cer. Soc. 48, 508 (1965).CrossRefGoogle Scholar
  38. [38]
    Tietjen, J. J., Amick, J. A., J. Electrochem. Soc. 113, 724 (1966).CrossRefGoogle Scholar
  39. [39]
    Reid, F. J., Miller, S. E., Goering, H. L., J. Electrochem. Soc. 113, 467 (1966).CrossRefGoogle Scholar
  40. [40]
    Mee, J. E., Pulliam, G. R., Proc. Int. Conf. Crystal Growth, Boston 1966, S. 333Google Scholar
  41. [41]
    Prior, A. C., J. Electrochem. Soc. 108, 82 (1961).CrossRefGoogle Scholar
  42. [42]
    Hartmann, H., Kristall und Technik 1, 569 (1966).CrossRefGoogle Scholar
  43. [43]
    Lynch, R. T., Thomas, D. G., Dietz, R. E., J. Appl. Phys. 34, 706 (1963).CrossRefADSGoogle Scholar
  44. [44]
    Bridgman, P. W., Proc. Amer. Acad. Arts Sci. 60, 305 (1925).CrossRefGoogle Scholar
  45. [45]
    Pizzarello, F., J. Appl. Phys. 25, 804 (1954).CrossRefADSGoogle Scholar
  46. [46]
    Kaldis, E., Widmer, R., J. Phys. Chem. Solids 26, 1697 (1965).CrossRefADSGoogle Scholar
  47. [47]
    Kaldis, E., J. Phys. Chem. Solids 26, 1701 (1965).CrossRefADSGoogle Scholar
  48. [48]
    v. d. Stolpe, C., J. Phys. Chem. Solids 27, 1952 (1966).CrossRefGoogle Scholar
  49. [49]
    Piper, W. W., Polich, S. J., J. Appl. Phys. 32, 1278 (1961).CrossRefADSGoogle Scholar
  50. [50]
    Clark, L., Woods, J., Brit. J. Appl. Physics 17, 319 (1966).CrossRefADSGoogle Scholar
  51. [51]
    Konozenko, I. D., Musalevski, E. O., Robna, A. I., Galuschka, O. P., Schmatko, G. G., Nikolaewa, L. G., Ukrain, J. Phys. 11, 171 (1966).Google Scholar
  52. [52]
    Hemmat, N., Weinstein, M., J. Electrochem Soc. 114, 851 (1967).CrossRefGoogle Scholar
  53. [53]
    Dev, I., Mat. Res. Bull. 1, 173 (1967).Google Scholar
  54. [54]
    Dev, I., Lauer, R. B., Mat. Res. Bull. 1, 185 (1966).CrossRefGoogle Scholar
  55. [55]
    Hill, R., Lauer, R. B., Mat. Res. Bull. 2, 861 (1967).CrossRefGoogle Scholar
  56. [56]
    Scholz, H., Chemie Ing. Technik 37, 1173 (1965), Siehe auch [35].Google Scholar
  57. [57]
    Frosch, C. J., J. Electrochem. Soc. 111, 180 (1964).CrossRefGoogle Scholar
  58. [58]
    Oldham, W. G., J. Appl. Phys. 36, 2887 (1965).CrossRefADSGoogle Scholar
  59. [59]
    Nicoll, F. H., J. Electrochem. Soc. 110, 1165 (1963).CrossRefGoogle Scholar
  60. [60]
    Sirtl, E., J. Phys. Chem. Solids 24, 1285 (1963).CrossRefADSGoogle Scholar
  61. [61]
    Pulliam, G. R., J. Appl. Phys. 38, 1120 (1967), Archer, J. L., Pulliam, G. R., Warren, R. G., Mee, J. E., Proc. Int. Conf. Crystal Growth, Boston 1966, S. 377CrossRefADSGoogle Scholar
  62. [62]
    Tietjen, J. J., PrivatmitteilungGoogle Scholar
  63. [63]
    Wagner, R. S., Ellis, W. C., J. Metals 15, 76 (1963), Wagner, R. S., Ellis, W. C., Appl. Phys. Letters 4, 89 (1964), Wagner, R. S., Ellis, W. C., Trans. Met. Soc. AIME 233, 1053 (1965).Google Scholar
  64. [64]
    Rabenau, A., Rau, H., Z. phys. Chem. Neue Folge 53, 1 (1967).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn GmbH, Verlag 1968

Authors and Affiliations

  • Rudolf Nitsche
    • 1
  1. 1.Laboratories RCA Ltd.Zürich

Personalised recommendations