Festkörper Probleme 8 pp 42-73 | Cite as
Kristallzucht aus der Gasphase
- 45 Downloads
Abstract
The preparation of single crystals of high purity or defined impurity contents is the basis of successful solid state research. Most crystal growth methods utilize liquid-solid phase transitions, i.e. the crystals are grown from melts or solutions. These methods cannot be applied to materials which have very high melting points, which decompose prior to melting, which sublime or for which suitable solvents do not exist. In order to fill this gap, various vapour phase methods have been developed in recent years. Whereas sublimation is confined to volatile materials, vapour phase reactions have found wide-spread application. The reactive gas mixture, yielding the solid phase, can be prepared by controlled unification of various gas streams or by chemical transport.
- 1.
Closed systems—usually sealed quartz ampoules—in which chemical transport takes place in a temperature gradient between a dissolution zone (T1) and a growth zone (T2). Such systems are especially suited for growing large crystals over long periods of time because they require little attention.
- 2.
Open systems utilizing chemical transport in a flowing gas between T1 and T2 or direct unification of separate gas streams in a growth zone. This technique is especially useful for growing thin epitaxial films on orientated substrates. An additional advantage lies in the possibility of producing mixed crystals or incorporating dopants by varying the gas composition during growth.
This paper describes the utilization of sublimation and vapour phase reactions for growing single crystals and epitaxial layers. Various techniques are discussed and examples for important applications are given.
Preview
Unable to display preview. Download preview PDF.
Literatur
- [1]Addamiano, A., Aven, M., J. Appl. Phys. 31, 36 (1960).CrossRefADSGoogle Scholar
- [2]Greene, L. C., Reynolds, D. C., Czyzak, S. J., Baker, W. M., J. Chem. Phys. 29, 1375 (1958).CrossRefADSGoogle Scholar
- [3]Samelson, H., Brophy, V. A., J. Electrochem. Soc. 108, 150 (1961).CrossRefGoogle Scholar
- [4]Patek, K., Czech. J. Phys. B 11, 140 (1961).Google Scholar
- [5]Patek, K., Czech. J. Phys. B 12, 216 (1962).CrossRefADSGoogle Scholar
- [6]Patek, K., Skala, M., Souckova, L., Czech. J. Phys. B 12, 313 (1962).CrossRefADSGoogle Scholar
- [7]Hartmann, H., Phys. Status Sol 2, 585 (1962).CrossRefADSGoogle Scholar
- [8]Dev, I., Brit. J. Appl. Phys. 17, 761 (1966).CrossRefADSGoogle Scholar
- [9]Mita, Y., J. Phys. Soc. Japan 16, 1484 (1961).ADSCrossRefGoogle Scholar
- [10]Nitsche, R., J. Phys. Chem. Solids 17, 163 (1960), Nitsche, R., Boelsterli, H. U., Lichtensteiger, M., J. Phys. chem. Solids 21, 199 (1961).CrossRefADSGoogle Scholar
- [11]Sirtl, E., Festkörperprobleme VI, 1 (1967).Google Scholar
- [12]Schaefer, H., “Chemische Transportreaktionen”, Verlag Chemie, Weinheim 1962.Google Scholar
- [13]Effer, D., J. Electrochem. Soc. 112, 1020 (1965).CrossRefGoogle Scholar
- [14]Lynch, R. T., J. Appl. Phys. 33, 1009 (1962).CrossRefADSMathSciNetGoogle Scholar
- [15]Frerichs, R., Phys. Rev. 72, 594 (1947).CrossRefADSGoogle Scholar
- [16]Richman, D., Tietjen, J. J., Conf. Electronic Mat., Boston (1966).Google Scholar
- [17]Linares, R. C., McGraw, R. B., J. Appl. Phys. 35, 3630 (1964).CrossRefADSGoogle Scholar
- [18]Volmer, M., “Kinetik der Phasenbildung”.—Steinkopff, Dresden und LeipzigGoogle Scholar
- [19]Kossel, W., Nachr. Ges. Wiss. Göttingen, math.-phys. Kl. 1927, 135Google Scholar
- [20]Stranski, I., Crystal Growth, Disc. Faraday Soc. (1949), Knacke, O., Stranski, I., Ergebn. Exakt. Naturwiss. XXVI, 383 (1952).Google Scholar
- [21]Volmer, M., Schultze, W., Z. phys. Chem. 156, 1 (1931).Google Scholar
- [22]Sraumanis, M., Z. phys. Chem. B 13, 316 (1931), ibid. Z. phys. Chem. B 19, 63 (1932), ibid. B 26, 246 (1934).Google Scholar
- [23]Keepin, G. R., J. Appl. Phys. 21, 260 (1950).CrossRefADSGoogle Scholar
- [24]Sakui, S., Sci. Papers Inst. phys. chem. Res. (Tokyo) 34, 1131 (1938).Google Scholar
- [25]Randall, M., Doody, T. G., J. phys. Chem. 43, 613 (1939).CrossRefGoogle Scholar
- [26]Honigmann, B., Z. Elektrochem. 58, 322 (1954).Google Scholar
- [27]Lorenz, R., Chem. Ber. 24 1509 (1891).Google Scholar
- [28]Antell, G. R., Effer, D., J. Electrochem. Soc. 106, 509 (1959).CrossRefGoogle Scholar
- [29]Nitsche, R., Fortschr. Miner. 44, 231 (1967).Google Scholar
- [30]Shiozawa, L. R., Jost, J. M., Contract AF 33 (657)-7399 Final Report ARL-65-98, May 1965.Google Scholar
- [31]DeMeis, W. M., Fischer, A. G., Mat. Res. Bull. 2, 465 (1967).CrossRefGoogle Scholar
- [32]Marley, J. A., MacEvoy, T. C., J. Appl. Phys. 32, 2504 (1961).CrossRefADSGoogle Scholar
- [33]Neuhaus, A., Recker, K., Proc. Int. Conf. Crystal Growth Boston 1966, S. 235Google Scholar
- [34]Grimmeis, H. G., Rabenau, A., Koelmans, H. J., J. Appl. Phys. 32, 2123 (1961).CrossRefADSGoogle Scholar
- [35]Scholz, H., Kluckow, R., Proc. Int. Conf. Crystal Growth, Boston, 1966, S. 475Google Scholar
- [36]Hanak, J. J., Berman, H. S., Proc. Int. Conf. Crystal Growth, Boston 1966, S. 259Google Scholar
- [37]Schaefer, P. S., J. Amer. Cer. Soc. 48, 508 (1965).CrossRefGoogle Scholar
- [38]Tietjen, J. J., Amick, J. A., J. Electrochem. Soc. 113, 724 (1966).CrossRefGoogle Scholar
- [39]Reid, F. J., Miller, S. E., Goering, H. L., J. Electrochem. Soc. 113, 467 (1966).CrossRefGoogle Scholar
- [40]Mee, J. E., Pulliam, G. R., Proc. Int. Conf. Crystal Growth, Boston 1966, S. 333Google Scholar
- [41]Prior, A. C., J. Electrochem. Soc. 108, 82 (1961).CrossRefGoogle Scholar
- [42]Hartmann, H., Kristall und Technik 1, 569 (1966).CrossRefGoogle Scholar
- [43]Lynch, R. T., Thomas, D. G., Dietz, R. E., J. Appl. Phys. 34, 706 (1963).CrossRefADSGoogle Scholar
- [44]Bridgman, P. W., Proc. Amer. Acad. Arts Sci. 60, 305 (1925).CrossRefGoogle Scholar
- [45]Pizzarello, F., J. Appl. Phys. 25, 804 (1954).CrossRefADSGoogle Scholar
- [46]Kaldis, E., Widmer, R., J. Phys. Chem. Solids 26, 1697 (1965).CrossRefADSGoogle Scholar
- [47]Kaldis, E., J. Phys. Chem. Solids 26, 1701 (1965).CrossRefADSGoogle Scholar
- [48]v. d. Stolpe, C., J. Phys. Chem. Solids 27, 1952 (1966).CrossRefGoogle Scholar
- [49]Piper, W. W., Polich, S. J., J. Appl. Phys. 32, 1278 (1961).CrossRefADSGoogle Scholar
- [50]Clark, L., Woods, J., Brit. J. Appl. Physics 17, 319 (1966).CrossRefADSGoogle Scholar
- [51]Konozenko, I. D., Musalevski, E. O., Robna, A. I., Galuschka, O. P., Schmatko, G. G., Nikolaewa, L. G., Ukrain, J. Phys. 11, 171 (1966).Google Scholar
- [52]Hemmat, N., Weinstein, M., J. Electrochem Soc. 114, 851 (1967).CrossRefGoogle Scholar
- [53]Dev, I., Mat. Res. Bull. 1, 173 (1967).Google Scholar
- [54]Dev, I., Lauer, R. B., Mat. Res. Bull. 1, 185 (1966).CrossRefGoogle Scholar
- [55]Hill, R., Lauer, R. B., Mat. Res. Bull. 2, 861 (1967).CrossRefGoogle Scholar
- [56]Scholz, H., Chemie Ing. Technik 37, 1173 (1965), Siehe auch [35].Google Scholar
- [57]Frosch, C. J., J. Electrochem. Soc. 111, 180 (1964).CrossRefGoogle Scholar
- [58]Oldham, W. G., J. Appl. Phys. 36, 2887 (1965).CrossRefADSGoogle Scholar
- [59]Nicoll, F. H., J. Electrochem. Soc. 110, 1165 (1963).CrossRefGoogle Scholar
- [60]Sirtl, E., J. Phys. Chem. Solids 24, 1285 (1963).CrossRefADSGoogle Scholar
- [61]Pulliam, G. R., J. Appl. Phys. 38, 1120 (1967), Archer, J. L., Pulliam, G. R., Warren, R. G., Mee, J. E., Proc. Int. Conf. Crystal Growth, Boston 1966, S. 377CrossRefADSGoogle Scholar
- [62]Tietjen, J. J., PrivatmitteilungGoogle Scholar
- [63]Wagner, R. S., Ellis, W. C., J. Metals 15, 76 (1963), Wagner, R. S., Ellis, W. C., Appl. Phys. Letters 4, 89 (1964), Wagner, R. S., Ellis, W. C., Trans. Met. Soc. AIME 233, 1053 (1965).Google Scholar
- [64]Rabenau, A., Rau, H., Z. phys. Chem. Neue Folge 53, 1 (1967).Google Scholar