Skip to main content

Über die Physik des Lawinendurchbruches in Halbleitern

  • Teil I. Referate des Fachausschusses ‚’Halbleiter”
  • Chapter
  • First Online:
Festkörperprobleme 9

Part of the book series: Advances in Solid State Physics ((ASSP,volume 9))

Abstract

The physical mechanisms for avalanche breakdown in semiconductor p-n junctions are well understood. Especially there is no difference between breakdown in microplasmas and uniform junctions. The ionization coefficients α(F) are measured for all semiconductors of technical interest. The experimental determined dependence of α on the electrical field strength F is well described by a theory of Baraff. This good agreement between theory and experimental data is achieved by setting the ionization energy equal to 3/2 of the band gap energy and a suitable choice of the mean free path for emission of optical phonons. Information on the distribution function of the electrons in the electron-hole plasma can be directly obtained from the spectral distribution of the light and also from the energy distribution of electrons both emitted by the junctions during breakdown. The broad light emission band is interpreted as Bremsstrahlung of hot carries in the field of ionized centers. Experimental data on electron emission are only available from p−n+ junctions in Si. Up to now it was not possible to get detailed information on the distribution function from these measurements. It seems desireable to continue these investigations by lowering the electron affinity of the electron emitting surface. The mean free paths of the hot electrons for emission of optical phonons as determined from the electron emission data, the analysis of light emission, the fit of the experimentally determined ionization coefficients to the Baraff theory, and the saturated drift velocity in high electric fields only agree, within a factor of two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. K. B. McAfee, E. J. Ryder, W. Shockley und M. Sparks, Phys. Rev. 83, 650 (1951).

    Article  ADS  Google Scholar 

  2. S. L. Miller, Phys. Rev. 99, 1234 (1955)

    Article  ADS  Google Scholar 

  3. H. Weinerth, Dissertation TH Aachen, 1966

    Google Scholar 

  4. W. Mönch, physica status solidi, im Druck

    Google Scholar 

  5. A. G. Chynoweth in Semicond. and Semimetals Bd. 4; Herausgeb.: R. K. Willardson und A. C. Beer: Academ. Press, New York 1968

    Google Scholar 

  6. M. S. Tyagi, Solid-State Electronics 11, 117 (1968)

    Article  ADS  Google Scholar 

  7. V. K. Aladinski und S. J. Sergeeva, Sov. Phys.-Semicond. 1, 650 (1967).

    Google Scholar 

  8. D. J. Rose, Phys. Rev. 105, 413 (1957).

    Article  ADS  Google Scholar 

  9. A. G. Chynoweth und K. G. McKay, Phys. Rev. 102, 369 (1956)

    Article  ADS  Google Scholar 

  10. K. G. McKay, Phys. Rev. 94, 877 (1954)

    Article  ADS  Google Scholar 

  11. F. W. Gutzwiller, Electronics Heft 13, S. 38 (1963)

    Google Scholar 

  12. K. W. Weiser und J. F. Woods, Appl. Phys. Letters 7, 225 (1965)

    Article  ADS  Google Scholar 

  13. K. M. Johnson, IEEE Trans. Electron. Devices 12, 55 (1965)

    Google Scholar 

  14. H. W. Ruegg, IEEE Trans. Electron. Devices 14, 239 (1967)

    Google Scholar 

  15. W. T. Read, Bell Syst. Techn. J. 37, 401 (1958).

    Google Scholar 

  16. C. A. Lee, R. L. Batdorf, W. Wiegmann und G. Kaminsky, Appl. Phys. Letters 6, 89 (1965)

    Article  ADS  Google Scholar 

  17. B. C. De Loach und R. L. Johnston, IEEE Trans. Electron Devices 13, 181 (1966)

    Google Scholar 

  18. R. L. Johnston, B. C. De Loach und B. G. Cohen, Bell Syst. Techn. J. 44, 369 (1965).

    Google Scholar 

  19. L. S. Napoli und R. J. Ikola, Proc. IEEE 53, 1231 (1965).

    Article  Google Scholar 

  20. C. A. Burrus, Proc. IEEE 53, 1256 (1965)

    Google Scholar 

  21. L. S. Bowman und H. J. Müller, Proc. IEEE 54, 1080 (1966)

    Google Scholar 

  22. L. S. Bowman und C. A. Burrus, IEEE Trans. Electron Devices 14, 411 (1967)

    Google Scholar 

  23. T. Misawa, Trans. IEEE Electron Devices 14, 580 (1967)

    Google Scholar 

  24. M. Poleshuk und P. H. Dowling, J. Appl. Phys. 34, 3069 (1963).

    Article  ADS  Google Scholar 

  25. G. Keil und I. Ruge, J. Appl. Phys. 36, 2600 (1965)

    Article  ADS  Google Scholar 

  26. R. S. Ricks und M. D. Pope, Jap. J. Appl. Phys. 2, 520 (1963)

    Article  ADS  Google Scholar 

  27. M. H. Pilkuhn, erscheint demnächst

    Google Scholar 

  28. G. L. Pearson und B. Sawyer, Proc. IRE 40, 1349 (1952)

    Article  Google Scholar 

  29. A. G. Chynoweth und G. L. Pearson, J. Appl. Phys. 29, 1103 (1958).

    Article  ADS  Google Scholar 

  30. A. Rose, RCA Rev. 27, 600 (1966)

    Google Scholar 

  31. K. S. Champlin, J. Appl. Phys. 30, 1039 (1959)

    Article  ADS  Google Scholar 

  32. R. J. McIntyre, J. Appl. Phys. 32, 983 (1961)

    Article  ADS  Google Scholar 

  33. R. H. Haitz, J. Appl. Phys. 35, 1370 (1964)

    Article  ADS  Google Scholar 

  34. A. Goetzberger, Festkörperprobleme III (Herausgeb.: F. Sauter; Friedr. Vieweg & Sohn, Braunschweig 1964), S. 209

    Google Scholar 

  35. R. H. Haitz, Phys. Rev. 138, A 260 (1965)

    Article  ADS  Google Scholar 

  36. A. G. Chynoweth, J. Appl. Phys. 31, 1161 (1960)

    Article  ADS  Google Scholar 

  37. A. S. Tager, Fiz. Tverd. Tela 6, 2418 (1965) (engl. Übers.: Sov Phys.-Sol. State 6, 1919 (1965))

    Google Scholar 

  38. R. H. Haitz, A. Goetzberger, R. M. Scarlett und W. Shockley, J. Appl. Phys. 34, 1581 (1963)

    Article  ADS  Google Scholar 

  39. A. Goetzberger und C. Stephens, J. Appl. Phys. 32, 2646 (1961)

    Article  ADS  Google Scholar 

  40. R. H. Haitz und A. Goetzberger, Solid-State Electronics 6, 678 (1964)

    Article  Google Scholar 

  41. R. H. Haitz, J. Appl. Phys. 36, 3123 (1965)

    Article  ADS  Google Scholar 

  42. R. H. Haitz, Solid-State Electronics 7, 439 (1964).

    Article  ADS  Google Scholar 

  43. R. H. Haitz, Solid-State Electronics 8, 417 (1965)

    Article  ADS  Google Scholar 

  44. I. Ruge und G. Keil, J. Appl. Phys. 34, 3306 (1963)

    Article  ADS  Google Scholar 

  45. I. Ruge und R. Conradt, Z. Naturforschg. 18a, 1016 (1963)

    ADS  Google Scholar 

  46. H. Kressel, RCA Review 28, 175 (1967)

    Google Scholar 

  47. W. Shockley, Czech. J. Phys. B 11, 81 (1961) bzw. Solid-State Electronics 2, 35 (1961)

    Article  ADS  Google Scholar 

  48. W. Kaiser, Phys. Rev. 105, 1751 (1957)

    Article  ADS  Google Scholar 

  49. R. C. Newman, Proc. Phys. Soc. Lond. 76, 993 (1960).

    Article  ADS  Google Scholar 

  50. V. V. Batavin, G. V. Popova und L. A. Batavina, Fiz. Tverd. Tela 8, 2505 (1966) (engl. Übers.: Sov. Phys.-Sol. State 8, 2005 (1967))

    Google Scholar 

  51. J. E. Lawrence, J. Electrochem. Soc. 112, 796 (1965)

    Article  Google Scholar 

  52. H. J. Queisser und A. Goetzberger, Phil. Mag. 8, 1063 (1963)

    Article  ADS  Google Scholar 

  53. R. L. Batdorf, A. G. Chynoweth, G. C. Dacey und P. W. Foy, J. Appl. Phys. 31, 1153 (1960)

    Article  ADS  Google Scholar 

  54. A. Goetzberger, B. McDonald, R. H. Haitz und R. M. Scarlett, J. Appl. Phys. 34, 1591 (1963)

    Article  ADS  Google Scholar 

  55. M. Gershenzon und A. Ashkin, J. Appl. Phys. 37, 246 (1966)

    Article  ADS  Google Scholar 

  56. C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleimack und W. Wiegmann, Phys. Rev. 134, A 761 (1964)

    Article  ADS  Google Scholar 

  57. K. G. McKay und K. B. McAfee, Phys. Rev. 91, 1079 (1953)

    Article  ADS  Google Scholar 

  58. R. A. Logan und S. M. Sze, J.Phys. Soc. Jap. 21, Suppl., 434 (1966)

    Google Scholar 

  59. S. L. Miller, Phys. Rev. 105, 1246 (1957)

    Article  ADS  Google Scholar 

  60. A. G. Chynoweth, Phys. Rev. 109, 1537 (1958)

    Article  ADS  Google Scholar 

  61. J. L. Moll und R. van Overstraeten, Solid-State Electronics 6, 147 (1963)

    Article  ADS  Google Scholar 

  62. T. Ogawa, Jap. J. Appl. Phys. 4, 473 (1965)

    Article  ADS  Google Scholar 

  63. R. D. Baertsch, IEEE Trans. Electron Devices 13, 987 (1966)

    Google Scholar 

  64. H. W. Ruegg, IEEE Trans. Electron Devices 14, 239 (1967)

    Google Scholar 

  65. R. A. Logan, A. G. Chynoweth und B. G. Cohen, Phys. Rev. 128, 2518 (1962)

    Article  ADS  Google Scholar 

  66. H. Kressel und G. Kupsky, Intl. J. Electronics 20, 535 (1966)

    Article  Google Scholar 

  67. R. A. Logan und H. G. White, Phys. Rev. 134, A 761 (1964)

    Article  ADS  Google Scholar 

  68. M. P. Mikhailova, D. N. Nasledov und S. V. Slobodelikov, Fiz. Tckhin. Poluprov. 1, 123 (1967) (engl. Übers.: Sov. Phys.-Semicond. 1, 94 (1967))

    Google Scholar 

  69. J. L. Moll, Physics of Semiconductors, McGraw-Hill Book Comp., New York 1964

    MATH  Google Scholar 

  70. H. Ihantola, private Mitteilung

    Google Scholar 

  71. R. Andrew und N. R. Howard, Intl. J. Electronics 18, 599 (1965)

    Article  Google Scholar 

  72. R. A. Kokosa und R. L. Davies, IEEE Trans. Electron Devices 13, 874 (1966)

    Google Scholar 

  73. S. M. Sze und G. Gibbons, Appl. Phys. Letters 8, 111 (1966)

    Article  ADS  Google Scholar 

  74. R. Emeis und A. Herlet, Z. Naturforsch. 12a, 1018 (1957)

    ADS  Google Scholar 

  75. J. Maserjian, J. Appl. Phys. 30, 1613 (1959)

    Article  ADS  Google Scholar 

  76. A. Herlet, Solid-State Electronics 8, 655 (1965)

    Article  ADS  Google Scholar 

  77. W. Mönch, Solid-State Electronics 10, 1085 (1967)

    Article  ADS  Google Scholar 

  78. A. Goetzberger und W. Shockley, J. Appl. Phys. 31, 1821 (1960)

    Article  ADS  Google Scholar 

  79. C. Norris und J. F. Gibbons, IEEE Trans. Electron. Devices 14, 38 (1967)

    Google Scholar 

  80. C. Y. Duh und J. L. Moll, IEEE Trans. Electron. Devices 14, 46 (1967)

    Google Scholar 

  81. C. Y. Duh und J. L. Moll, Solid-State Electronics 11, 917 (1968)

    Article  ADS  Google Scholar 

  82. W. A. Harrison, Phys. Rev. 104, 1281 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  83. D. Long, Phys. Rev. 120, 2024 (1960)

    Article  ADS  Google Scholar 

  84. J. C. Philips, Phys. Rev. 104, 1263 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  85. J. E. Aubrey, W. Gubler, H. Henningensen und S. H. Koenig, Phys. Rev. 130, 1667 (1963)

    Article  ADS  Google Scholar 

  86. M. H. Jørgensen, Phys. Rev. 156, 834 (1967)

    Article  ADS  Google Scholar 

  87. J. R. Hauser, J. Appl. Phys. 37, 507 (1966)

    Article  ADS  Google Scholar 

  88. E. O. Kane, Phys. Rev. 159, 624 (1967)

    Article  ADS  Google Scholar 

  89. W. R. Dodge, S. R. Domen, T. F. Leedy und D. M. Skopik, Phys. Rev. Letters 17, 653 (1966) (dort auch ältere Zitate)

    Article  ADS  Google Scholar 

  90. D. Pines, Elementary Excitations in Solids (W. A. Benjamin, Inc., New York, 1963)

    Google Scholar 

  91. H. Dimigen, Z. Physik 165, 53 (1961)

    Article  ADS  Google Scholar 

  92. A. Zareba, Proc. Intl. Conf. Semicond. Physics, Prag 1960 (Ed.: J. Backovsky; Czech. Acad. Sci. Prag, 1961) p. 476

    Google Scholar 

  93. C. A. Klein, J. Phys. Soc. Jap. 21, Suppl., 307 (1966).

    ADS  Google Scholar 

  94. P. A. Wolff, Phys. Rev. 95, 1415 (1954)

    Article  ADS  Google Scholar 

  95. G. A. Baraff, Phys. Rev. 128, 2507 (1962)

    Article  MATH  ADS  Google Scholar 

  96. C. R. Crowell und S. M. Sze, Appl. Phys. Letters 9, 242 (1966)

    Article  ADS  Google Scholar 

  97. L. V. Keldysh, J. Exptl. Theoret. Phys. (USSR) 48, 1692 (1965) (engl. Übers.: Sov. Phys.-JETP 21, 1135 (1965))

    Google Scholar 

  98. L. V. Keldysh, J. Exptl. Theoret. Phys. (USSR) 37, 713 (1959) (engl. Übers.: Sov. Phys.-JETP 10, 509 (1960))

    Google Scholar 

  99. D. J. Bartelnink, J. L. Moll und N. I. Meyer, Phys. Rev. 130, 973 (1963)

    ADS  Google Scholar 

  100. M. Waldner, J. Appl. Phys. 36, 188 (1965).

    Article  ADS  Google Scholar 

  101. J. Bok und J. Klein, J. Phys. Chem. Solids 27, 1295 (1966)

    Article  ADS  Google Scholar 

  102. N. I. Meyer und F. P. Jensen, J. Appl. Phys. 37, 4297 (1966).

    Article  ADS  Google Scholar 

  103. R. Stratton, Proc. Roy. Soc. (London) A 246, 406 (1958)

    ADS  Google Scholar 

  104. R. Newman, Phys. Rev. 100, 700 (1955)

    Article  ADS  Google Scholar 

  105. M. Kikuchi und K. Tachikawa, J. Phys. Soc. Jap. 14, 1830 (1959)

    ADS  Google Scholar 

  106. R. A. Logan und A. G. Chynoweth, J. Appl. Phys. 33, 1649 (1962)

    Article  ADS  Google Scholar 

  107. R. A. Logan, A. G. Chynoweth und B. G. Cohen, Phys. Rev. 128, 2518 (1962)

    Article  ADS  Google Scholar 

  108. A. E. Michel, N. I. Nathan und J. C. Marinace, J. Appl. Phys. 35, 3543 (1964)

    Article  ADS  Google Scholar 

  109. T. Fiegieslki und A. Torun, Proc. Intl. Conf. Phys. Semiconductors Exeter 1962 (Ed: A. C. Stickland, Inst. Phys., London 1962) p. 863

    Google Scholar 

  110. A. G. Chynoweth und K. G. McKay, Phys. Rev. 102, 369 (1956)

    Article  ADS  Google Scholar 

  111. L. W. Davies und A. R. Storm jr., Phys. Rev. 121, 381 (1961)

    Article  ADS  Google Scholar 

  112. A. G. Chynoweth und K. H. Gummel, J. Phys. Chem. Solids 16, 191 (1960)

    Article  ADS  Google Scholar 

  113. M. Gershenzon und R. M. Mikulyan, J. Appl. Phys. 32, 1338 (1961)

    Article  ADS  Google Scholar 

  114. M. H. Pilkuhn und G. Schul, Intl. Conf. on GaAs, Dallas, Texas, 1968, im Druck

    Google Scholar 

  115. P. A. Wolff, J. Phys. chem. Solids, 16, 184 (1960)

    Article  ADS  Google Scholar 

  116. E. Kamienicki, phys. stat. sol. 6, 877 (1964)

    Article  ADS  Google Scholar 

  117. J. Shewchun und L. Y. Wei, Solid-State Electronics 8, 485 (1965).

    Article  ADS  Google Scholar 

  118. M. Gershenzon in Semicond. and Semimetals, Bd. 2; Herausgeb. R. K. Willardson und A. C. Beer; Academic Press, New York, 1966

    Google Scholar 

  119. G. A. Baraff, Phys. Rev. 135, A 528 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

O. Madelung

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Friedr. Vieweg + Sohn GmbH, Verlag

About this chapter

Cite this chapter

Mönch, W. (1969). Über die Physik des Lawinendurchbruches in Halbleitern. In: Madelung, O. (eds) Festkörperprobleme 9. Advances in Solid State Physics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0109155

Download citation

  • DOI: https://doi.org/10.1007/BFb0109155

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75325-4

  • Online ISBN: 978-3-540-75326-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics