Charge transport in non-crystalline semiconductors

  • N. F. Mott
Teil I. Referate des Fachausschusses „Halbleiter”
Part of the Advances in Solid State Physics book series (ASSP, volume 9)


A description is given of the theory of the transport properties of electrons in non-crystalline solids and liquids. Two different mechanisms by which an electron can move are distinguished. One is that familiar in crystalline semiconductors and metals, in which the mobility is not thermally activated and a mean free path can be defined. The other is thermally activated hopping which occurs particularly in impurity conduction, and in which the electron jumps from one localised state to another with the emission or absorption of phonons. When the electron states are localised, the conductivity tends to zero with the temperature, even though the density of states is everywhere finite. Some experimental work is described which distinguishes the two types of charge transport and shows what happens at the transition between them. This includes impurity conduction in compensated semiconductors and conduction in cerium sulphide containing a high concentration of vacancies. The model established by this work is applied to chalcogenide glasses and to amorphous germanium. It is shown also that it provides a satisfactory explanation for the behaviour of threshold switches making use of a conducting glass as the heart of the device.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. F. Ioffe and A. R. Regel, Prog. Semicon. 4, 237 (1960).Google Scholar
  2. [2]
    J. M. Ziman, Phil. Mag. 6, 1013 (1961).MATHCrossRefADSGoogle Scholar
  3. [3]
    A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).MATHCrossRefADSGoogle Scholar
  4. [4]
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).CrossRefADSGoogle Scholar
  5. [5]
    N. F. Mott, Phil. Mag. 17, 1259 (1968).CrossRefADSGoogle Scholar
  6. [6]
    M. H. Cohen, Lecture at Gordon Conference 1968 (to be published).Google Scholar
  7. [7]
    N. F. Mott, Phil. Mag. 19, 835 (1969).CrossRefADSGoogle Scholar
  8. [8]
    H. Fritzsche and K. Lark-Horowitz, Phys. Rev. 113, 999 (1959).CrossRefADSGoogle Scholar
  9. [9]
    E. A. Davis and W. D. Compton, Phys. Rev. A 140, 2183 (1965).CrossRefADSGoogle Scholar
  10. [10]
    N. F. Mott and E. A. Davis, Phil. Mag. 17, 1269 (1968).CrossRefADSGoogle Scholar
  11. [11]
    M. Cutler and J. F. Leavy, Phys. Rev. A 133, 1153 (1964).CrossRefADSGoogle Scholar
  12. [12]
    M. Cutler and N. F. Mott, Phys. Rev. (1969, in press).Google Scholar
  13. [13]
    A. I. Gubanov, Quantum Electron Theory of Amorphous Conductors (1963) (Translated by Consultants Bureau, New York, 1965).Google Scholar
  14. [14]
    L. Banyai, Physique des Semiconducteurs, 417 (Paris: Dunod, 1964).Google Scholar
  15. [15]
    E. R. Dobbs and G. O. Jones, Rep. Prog. Phys. 20, 516 (1957).CrossRefADSGoogle Scholar
  16. [16]
    H. Schnyders, S.A. Rice and L. Meyer, Phys. Rev. 150, 127 (1966).CrossRefADSGoogle Scholar
  17. [17]
    L. S. Miller, S. Howe and W. E. Spear, Phys. Rev. 166, 871 (1968).CrossRefADSGoogle Scholar
  18. [18]
    J. Lekner, Phys. Rev. 158, 130 (1967).CrossRefADSGoogle Scholar
  19. [19]
    B. I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966).CrossRefADSGoogle Scholar
  20. [20]
    J. Zittartz and J. S. Langer, Phys. Rev. 148, 741 (1966).MATHCrossRefADSGoogle Scholar
  21. [21]
    W. E. Spear, Proc. Phys. Soc. Lond. B 70, 669 (1957).CrossRefADSGoogle Scholar
  22. [22]
    J. Hirsch, J. Phys. Chem. Sol. 27, 1385 (1966).CrossRefADSGoogle Scholar
  23. [23]
    J. Stuke (this volume) and also lecture to Sheffield Conference (1966).Google Scholar
  24. [24]
    L. Friedman and T. Holstein, Ann. Phys. 21, 494 (1963).CrossRefADSGoogle Scholar
  25. [25]
    K. L. Cauer, Diplomarbeit Technischen Hochschule Karlsruhe (1966).Google Scholar
  26. [26]
    N. F. Mott, Adv. in Phys. 13, 325 (1964).CrossRefADSGoogle Scholar
  27. [27]
    R. Grigorovici, N. Croitoru, A. Dévényi and E. Teleman, Physique des Semiconducteurs, 423 (Paris: Dunod, 1964).Google Scholar
  28. [28]
    P. A. Walley, Thin Solid Films 2, 327 (1968).CrossRefADSGoogle Scholar
  29. [29]
    R. Grigorovici and A. Dévényi, Proc. IXth International Conference on the Physics of Semiconductors, Moscow (Publishing House “Nauka”: Leningrad) 2, 1267 (1968).Google Scholar
  30. [30]
    J. Tauc, R. Grigorovici and A. Vancu, Phys. Stat. Sol. 15, 627 (1966).CrossRefADSGoogle Scholar
  31. [31]
    T. H. Geballe and G. W. Hull, Phys. Rev. 98, 940 (1955).CrossRefADSGoogle Scholar
  32. [32]
    A. H. Clark, Phys. Rev. 154, 750 (1967).CrossRefADSGoogle Scholar
  33. [33]
    G. Sadasiv, Phys. Rev. 128, 1131 (1962).CrossRefADSGoogle Scholar
  34. [34]
    J. C. Male, Brit. J. Applied Phys. 18, 1543 (1967).CrossRefADSGoogle Scholar
  35. [35]
    A. E. Owen, Glass Industry, 695 (1967).Google Scholar
  36. [36]
    R. F. Shaw, Phys. Rev. Letters (1969, in press)Google Scholar
  37. [37]
    M. Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961).CrossRefADSGoogle Scholar
  38. [38]
    M. Pollak, Phys. Rev. A 133, 564 (1964).CrossRefADSGoogle Scholar
  39. [39]
    S. R. Ovshinsky, Phys. Rev. Letters 21, 1450 (1968).CrossRefADSGoogle Scholar
  40. [40]
    N. F. Mott, Contemporary Physics 10, 125 (1969).CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg + Sohn GmbH, Verlag 1969

Authors and Affiliations

  • N. F. Mott
    • 1
  1. 1.Cavendish LaboratoryCambridge

Personalised recommendations