Skip to main content

Elektrische Eigenschaften von festen Stoffen mit gemischter Elektronen- und Ionenleitung z.B. Ag2S

  • Chapter
  • First Online:
Festkörper Probleme VI

Part of the book series: Advances in Solid State Physics ((ASSP,volume 6))

Abstract

The electrical properties e.g. the partial electronic or ionic conductivity of binary solid compounds, e.g. Ag2S or NiS have well defined values only when, for a given pressure or given temperature, a further degree of freedom, e.g. the thermodynamic activity or the chemical potential of one component is fixed. Instead of the thermodynamic activity one can fix the exact deviation from the ideal stoichiometric constitution. The chemical potential or the thermodynamic activity of one component may be evaluated or fixed by the constitution of the surrounding phase, yet in many cases it is more advantageous to use a solid-state galvanic cell. In case of silver sulfide the solid-state galvanic cell Ag/AgJ/Ag2S may be used, the EMF of the cell being related to the chemical potential of the silver in silver-sulfide. In this cell AgJ is a practically pure ionic conductor for silver ions. A flow of current through the cell is an equivalent for the mass of silver which is brought or withdrawn from the Ag2S. With this type of cell C. Wagner by an “Electrochemical Titration” has determinded the relation between the chemical potential of the silver and the deviation from ideal stoichiometry. Between 200 and 400°C the stoichiometric point of Ag2S is near the equilibrium with liquid sulphur. Because of the high disorder of the silver ions a change of the chemical potential of silver by a change of the stoichiometric constitution is only given by a change of concentration of the quasi-free electrons, respectively defect electrons. The thermodynamic behaviour of the electrons shows the transition from ideal gaseous behaviour up to beginning of degeneracy. From the temperature dependance of the EMF of the cell the partial molar enthalpies and entropies for the transition from silver to silver sulfide may be calculated. The behaviour of these values can also be explained by the thermodynamic behaviour of the electrons in Ag2S.

The partial ionic- and electronic conductivities can be measured independently in siutable galvanic cells. As expected from the type of disorder in Ag2S the partial conductivity of silver ions is independent of the chemical potential of the silver. A comparision between the partial conductivity in Ag2S and the self-diffusion-coefficient shows that the Nernst-Einstein-Relation is satisfied within the order of magnitude only. The deviation may be interpreted by correlation effects associated with selfdiffusion. The partial electronic conductivity varies according to the concentration of the electrons.

Quite another behaviour is shown by NiS at 400°C. While the partial conductivity of the electrons is independent of deviations from the stoichiometric constitution, that of the ions will change in proportion to the activity of the sulphur. It can be assumed that at 400°C a high intrinsic disorder of electrons exists in NiS independent of the stoichiometric constitution. The partial ionic conductivity of the nickel ions is caused by nickel ion vacancies by the simultaneous deficiency of metal. The thermodynamic behaviour of NiS is determind by the changes of concentration of the nickel ion vacancies. These conclusions can be drawn from kinetic measurements on the formation of NiS, which can also be carried out with solid state galvanic cells.

Mit 14 Abbildungen *** DIRECT SUPPORT *** A00AX006 00004

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. E. Warburg, Wiedem. Ann. Physik, 21, 622 (1884) E, Warburg und F. Tegetmeier, Wiedem. Ann. Physik 32, 442 (1887), 35, 455 (1888), F. Tegetmeier, Wiedem. Ann. Physik 41, 18 (1890).

    Article  ADS  Google Scholar 

  2. F. Haber und A. Tolloczko, Z. anorg. Chem. 41, 407 (1904).

    Article  Google Scholar 

  3. E. Bruni und O. Scarpa, Rend. reale accad. naz. Lincci, 22, 438 (1913).

    Google Scholar 

  4. C. Tubandt und F. Lorenz, Z. Physik. Chem. 87, 543 (1914). C. Tubandt und S. Eggert, Z. anorg. u. allgem. Chem., 110, 196 (1920). C. Tubandt “Handbuch der Experimentalphysik”, herausgeg. von W. Wien und F. Harms, Bd. 12, Teil 1, S. 383, Akademische Verlagsgesellschaft, Leipzig (1932). C. Tubandt, Z. anorg. u. allgem. Chem., 115, 105 (1921). C. Tubandt und H. Reinhold, Z. Elektrochem. 29, 313 (1923). C. Tubandt, H. Reinhold und G. Liebold, Z. anorg. u. allgem. Chem., 197, 225 (1931).

    Google Scholar 

  5. C. Tubandt, Z. anorg. u. allgem. Chem., 115, 105 (1921).

    Article  Google Scholar 

  6. B. Ilschner, J. Chem. Phys. 28, 1109 (1958).

    Article  ADS  Google Scholar 

  7. M. Faraday, Ann. Physik 107, 241 (1834), Pogg. Annalen 31 (241).

    Google Scholar 

  8. C. Tubandt, S. Eggert und G. Schibbe, Z. anorg. Chem. 117, 1 (1921).

    Article  Google Scholar 

  9. C. Wagner, Z. physik. Chem., B 21, 42 (1933). C. Wagner, Z. physik. Chem., B 23, 469 (1933).

    Google Scholar 

  10. F. Klaiber, Ann. Physik, 3, 229 (1929).

    Article  ADS  Google Scholar 

  11. C. Tubandt, H. Reinhold, Z. Elektrochem. 37, 589 (1931).

    Google Scholar 

  12. C. Wagner, J. Chem. Phys. 21, 1819 (1953).

    Article  ADS  Google Scholar 

  13. C. Wagner, Z. Elektrochem. 40, 364 (1934).

    Google Scholar 

  14. H. Rickert und V. Sattler, erscheint demnächst.

    Google Scholar 

  15. P. Rahlfs, Z. physik. Chem. B 31, 157 (1935).

    Google Scholar 

  16. H. Rickert und C. D. O'Briain, Z. physik. Chem. NF 31, 71 (1962).

    Google Scholar 

  17. J. Hebb, J. chem. Physics 20, 185 (1952).

    Article  ADS  Google Scholar 

  18. H. Rickert, Z. physik. Chem. 23, 355 (1960).

    Google Scholar 

  19. C. D. O'Briain und H. Rickert, erscheint demnächst.

    Google Scholar 

  20. R. L. Allen und W. J. Moore, J. phys. Chem. 63, 223 (1959).

    Article  Google Scholar 

  21. J. Bardeen und C. Herring, Imperfections in Nearly Perfect crystals, p. 261, New York 1952.

    Google Scholar 

  22. A. P. Le Claire und A. B. Lidiard, Philos. Mag. (8) 1, 518 (1956).

    ADS  Google Scholar 

  23. K. Compaan und Y. Haven, Trans. Faraday Soc. 52, 786.

    Google Scholar 

  24. H. Rickert, Z. physik. Chem. NF 24, 418 (1960).

    Google Scholar 

  25. S. Mijatani, J. Phys. Soc. Japan 10, 786 (1955).

    Article  ADS  Google Scholar 

  26. J. Mc Dougall und E. C. Stoner, Trans. Roy. Soc., (London) A 237, 67 (1938).

    Article  ADS  Google Scholar 

  27. S. Mrowec und H. Rickert, Z. physik. Chem. NF 36, 329 (1963).

    Google Scholar 

  28. Y. V. P. R. Row und H. Rickert, Z. physik. Chem. NF 43, 115 (1964).

    Google Scholar 

  29. K. Hauffe und H. G. Flint, Z. physik. Chem. 200, 199 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

O. Madelung

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Friedr. Vieweg & Sohn GmbH, Verlag

About this chapter

Cite this chapter

Rickert, H. (1967). Elektrische Eigenschaften von festen Stoffen mit gemischter Elektronen- und Ionenleitung z.B. Ag2S. In: Madelung, O. (eds) Festkörper Probleme VI. Advances in Solid State Physics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0109111

Download citation

  • DOI: https://doi.org/10.1007/BFb0109111

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75319-3

  • Online ISBN: 978-3-540-75320-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics