Skip to main content

Optische Absorption von Festkörpern durch Gitterschwingungen

  • Chapter
  • First Online:
Festkörper Probleme VI

Part of the book series: Advances in Solid State Physics ((ASSP,volume 6))

  • 52 Accesses

Abstract

This paper shall give an experimentalists survey of the absorption of electromagnetic waves in nonmetatallic solids due to their lattice vibrations. It deals with the absorption in perfect crystals as well as with the impurity induced effects in non perfect crystals. The survey shall be restricted to the pure lattice vibration absorption by means of the electric dipole interaction of the first and higher orders.

The first order absorption or one-phonon absorption leads in heteropolar crystals to the well-known Reststrahlen in the infrared while homopolar crystals of higher symmetry lack any one-phonon absorption. The higher-order effects causing multi-phonon absorption exhibit a broad additional absorption the structure of which is determined by the combined density of the involved phonons and the parameters which couple these phonons in the field. The coupling has two origins, namely the anharmonicity and the nonlinear dipole moment of the lattice vibrations. The latter one causes solely the multi-phonon absorption in homopolar crystals like Ge and Si while the first coupling dominates the multiphonon effects in typical ionic crystals like the alkali halides. All absorption effects in perfect crystals are strongly restricted by the laws of conservation of energy and wavenumber.

Imperfect crystals have lost the translational symmetry which causes the break-down of the wavenumber conservation. Therefore, all lattice modes of the disturbed crystal can lead to optical absorption if they have a nonvanishing dipole moment. This means that imperfect crystals show a continuous one-phonon absorption in the whole range of acoustic and optical lattice frequencies—mainly in the far infrared—which is determined by the density of one-phonon states and by the special eigenvector of the disturbed modes near the defect. This continuous absorption is called band-mode absorption—showing under some circumstances a resonant behavior—and occurs always in crystals with defects. Some sorts of point defects might show in addition to the band-mode absorption a local-mode absorption which appears as a line absorption outside of the lattice bands, i. e. in the acoustic-optical gap or above the highest lattice mode. These modes are strongly localised around the defect particle. The anharmonicity influences the spectral width of such local-modes due to their decay into band-modes. The anharmonicity might also cause a coupling of the local-mode to band-modes in the electromagnetic field so that phonon-sidebands appear in absorption around the local-mode line.

The comparison between theory and experiment will be considered in detail to all the above mentioned effects.

Mit 19 Abbildungen 0144

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur Allgemeines

  1. Born, M. und Huang, K., Dynamical Theory of Crystal Lattices; Oxford 1954.

    Google Scholar 

  2. Bilz, H., The Scottish Univ. Summer School in Physics, 1965.

    Google Scholar 

  3. Szigeti, B., Proc. Roy. Soc. A 258, 377 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Martin, D. H., Advances in Physics 14 No 53, 39 (1965).

    Article  ADS  Google Scholar 

  5. Burstein, E., J. Phys. Chem. Solids, Suppl. 1, 315 (1965).

    Google Scholar 

Ein-Phonon-Absorption ungestörter Kristalle

  1. Geick, R., Z. Phys. 163, 499 (1961).

    Article  ADS  Google Scholar 

  2. Czerny, M. und Barnes, R. B., Z. Physik 72, 447 (1931).

    Article  ADS  Google Scholar 

  3. Jones, G. O., Martin, D. H., Mawer, P. A. und Perry, C. H., Proc. Roy. Soc. A 261, 10 (1961).

    Article  ADS  Google Scholar 

  4. Havelock, T. H., Proc. Roy. Soc. A 105, 448 (1924).

    ADS  Google Scholar 

  5. Berreman, R., Phys. Rev. 130, 2193 (1963).

    Article  ADS  Google Scholar 

Multiphonon-Absorption ungestörter Kristalle

  1. Lax M. und Burstein, E., Phys. Rev. 97, 39 (1955).

    Article  MATH  ADS  Google Scholar 

  2. Bilz, H., Genzel, L. und Happ, H., Z. Physik 160, 535 1960; 169, 53 (1962).

    Article  ADS  Google Scholar 

  3. Maradudin, A. A.; Wallis, R. F., Phys. Rev. 120, 442, 1960; Phys. Rev. 123, 777, 1961; Phys. Rev. 125, 1277, 1962.

    Article  MATH  ADS  Google Scholar 

  4. Mitskevich, V. V., Soviet-Phys. Solid State 3, 2211 (1962); Soviet-Phys. Solid State 4, 2224 (1963.

    Google Scholar 

  5. Vinogradov, V. S., Soviet-Phys. Solid State 4, 519 (1962).

    Google Scholar 

  6. Cowley, R. A., Advances in Physics 12, 421 (1963).

    Article  ADS  Google Scholar 

  7. Wehner, R., Dissertation Freiburg 1964, Phys. Stat. Sol. 15, 725, (1966).

    Google Scholar 

  8. Collins, R. J. und Fan, H. J., Phys. Rev. 93, 674 (1954).

    Article  ADS  Google Scholar 

  9. Johnson, F. A., Proc. Phys. Soc. 73, 265 (1959).

    Article  ADS  Google Scholar 

  10. Hardy, J. R. und Smith, S. D., Phil. Mag. 6, 1163 (1961).

    Article  ADS  Google Scholar 

  11. Bilz, H., Geick, R. und Renk, K. F., Proc. Int. Conf. on Lattice Dynamics Copenhagen 1963, p. 355.

    Google Scholar 

  12. Van Hove, L., Phys. Rev. 89, 1189 (1953 oder 1955).

    Article  MATH  ADS  Google Scholar 

  13. Birman, J. L., Phys. Rev. 127, 1093 (1962); Phys. Rev. 131, 1489 (1963).

    Article  MATH  ADS  Google Scholar 

  14. Dolling, G., Inelastic Scattering of Neutrons in Solids and Liquids II, Vienna 1963, p. 37.

    Google Scholar 

  15. Ghose, A. et al., Phys. Rev. 113, 49 (1959).

    Article  ADS  Google Scholar 

  16. Geick, R., Phys. Rev. 138A, 1495 (1965).

    Article  ADS  Google Scholar 

  17. Barker, A. S. und Hopfield, J. J., Phys. Rev. 135A, 1732 (1964).

    Article  ADS  Google Scholar 

  18. Czerny, M., Z. Physik 65, 600 (1930).

    Article  ADS  Google Scholar 

  19. Califano, S. und Czerny, M., Z. Physik 150, 1 (1958).

    Article  ADS  Google Scholar 

  20. Genzel, L., Happ, H. und Weber, R., Z. Physik 154, 13 (1959).

    Article  ADS  Google Scholar 

  21. Cartwright, C. H. und Czerny, M., Z. Physik 90, 457 (1954).

    Article  ADS  Google Scholar 

  22. Genzel, L. und Klier, M., Z. Physik 144, 25 (1956).

    Article  ADS  Google Scholar 

  23. Seger, G. und Genzel, L., Z. Physik 169, 66 (1962).

    Article  ADS  Google Scholar 

  24. Happ, H., Hofmann, H. W., Lux, E. und Seger, G., Z. Physik 166, 510 (1962).

    Article  ADS  Google Scholar 

  25. Klier, M., Z. Physik 150, 49 (1958).

    Article  ADS  Google Scholar 

  26. Dötsch, H. und Happ, H., Z. Physik 177, 360 (1964).

    Article  ADS  Google Scholar 

  27. Jaspers, I. R., Kahan, A. und Plendl, J. N., Private Mitteilung.

    Google Scholar 

  28. Hadni, A., Compt. Rend. 255, 1595 (1962).

    Google Scholar 

  29. Hadni, A., Appl. Optics 4, 487 (1965).

    Article  ADS  Google Scholar 

  30. Stolen, R. und Dransfeld, K., Phys. Rev. 139, 4 A, 1295 (1965).

    Article  ADS  Google Scholar 

  31. Seger, G., Dissertation Freiburg 1965.

    Google Scholar 

  32. Loudon, R., Advances in Physics 13, 423 (1964); Phys. Rev. 137 A, 1784 (1965); Proc. Phys. Soc. London 84, 379 (1964).

    Article  ADS  Google Scholar 

  33. Reststrahl-Messungen Mitsuishi, A. und Yamada, Y., Yoshinaga, H., J. Opt. Soc. Am. 52, 14 (1962). (NaF, NaCl, KCl, KBr, KJ, CsBr, CsJ, TlCl, TlBr). Hass, M., J. Phys. Chem. Sol. 24, 1159 (1963). (LiCl, LiBr, KF, CsF, RbF). Hass, M. und Henvis, B. W., J. Phys. Chem. Sol. 23, 1099, 1962 (JnSb, JnAs, JnP, GaSb, GaAs, AlSb). Picus, G., Burstein, E., Henvis, B. W. und Hass, M., J. Phys. Chem. Sol. 8, 282 (1959) (JnAs, JnP, GaSb, GaAs, AlSb). Kaiser, W. und Spitzer, W. G., Phys. Rev. 127, (1950, 1962) (CaF2, SrF2) Yoshinaga, H., Phys. Rev. 100, 753 (1955) (PbS, InSb, PbSe, ZnS, TlCl) Mitsuishi, A., US-Japan Cooperative Seminar on Far Infrared Spectr., Columbus (Sept. 1965) (ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe) Yoshinaga, H. und Oetjen, R. A., Phys. Rev. 101, 526 (1956) (JnSb). Sanderson, R. B., J. Phys. Chem. Sol. 26, 803 (1965) (JnSb). Fröhlich, D., Z. Phys. 177, 126 (1964) (LiF). Geick, R., Phys. Lett., 10, 51 (1964) (PbS). Häfele, H. G., Ann. Physik 10, 321 (1963) (MgO). Collins, R. J. und Kleinmann, D. A., J. Phys. Chem. Sol. 11, 190 (1959) (ZnO). Kleinmann, D. A. und Spitzer, W. G., Phys. Rev. 118, 110 (1960) Turner, W. J. und Reese, W. E., Phys. Rev. 127, 126 (1962) (AlSb). Barker, A. S. und Tinkham, M., Phys. Rev. 125, 1527 (1962) (SrTiO3). Miller, R. C., Spitzer, W. G. und Kleinmann, D. A., Phys. Rev. 126, 1710 (1962) (SrTiO3, BaTiO3, TiO2). Miller, R. C. und Spitzer, W. G., Phys. Rev. 129, 94 (1963) (KTaO3). Spitzer, W. G., Kleinmann, D. A. und Walsh, D., Phys. Rev. 113, 127 (1959) (SiC). Collins, R. J. und Kleinmann, D. A., J. Phys. Chem. Sol. 11, 190 (1959) (ZnO). Collins, R. J., J. Appl. Phys. 30, 1135 (1959) (CdS). Besson, J. M., J. Appl. Phys. Suppl. 32, 2292 (1961) (CdS). Hunt, G. R., Perry, C. H. und Ferguson, J. Phys. Rev. 134, A688 (1964) (KMgF3, MgF2). Barker, A. S., Phys. Rev. 132, 1474 (1964) (Al2O3). Spitzer, W. G. und Kleinmann, D. A., Phys. Rev. 121, 1324 (1961) (SiO2).

    Article  ADS  Google Scholar 

Defekt-induzierte Gitterschwingungsabsorption

  1. Ludwig, W., Erg. Exakt. Naturwiss. 35, 1 (1964).

    Article  Google Scholar 

  2. Szigeti, B., J. Phys. Chem. Solids 24, 225 (1963).

    Article  ADS  Google Scholar 

  3. Genzel, L., Renk, K. F. und Weber, R., Phys. Stat. Sol., 12, 639 (1965).

    Article  ADS  Google Scholar 

  4. Wallis, R. F. und Maradudin, A. A., Prog. Theor. Physics 24, 1055 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  5. Brout, R. und Visscher, W. M., Phys. Rev. Lett. 9, 54 (1962).

    Article  ADS  Google Scholar 

  6. Dawber, P. G. und Elliott, R. J., Proc. Roy. Soc. A 273, 222 (1963); Proc. Phys. Soc. 81, 453 (1963).

    Article  MATH  ADS  Google Scholar 

  7. Angress, J. F., Smith, S. D. und Renk, K. F., Proc. Int. Conf. Lattice Dynamics Copenhagen (1963) p. 467.

    Google Scholar 

  8. Jones, G. O. und Woodfine, vgl. Zitat 4.

    Google Scholar 

  9. Angress, J. F., Goodwin, A. R. und Smith, S. D., Proc. Roy. Soc. A 287, 64 (1965).

    Article  ADS  Google Scholar 

  10. Sievers, A. J., Phys. Rev. Letters 13, 310 (1964).

    Article  ADS  Google Scholar 

  11. Weber, R., Phys. Letters 12, 311 (1964).

    Article  ADS  Google Scholar 

  12. Sievers, A. J. und Takeno, S., Private Mitteilung (1965).

    Google Scholar 

  13. Sievers, A. J., Maradudin, A. A. und Jaswal, S. S., Phys. Rev. 138, A272 (1965).

    Article  ADS  Google Scholar 

  14. Renk, K. F., Phys. Lett. 14, 281 (1965).

    Article  ADS  Google Scholar 

  15. Lytle, C. D., Master Thesis (1965), Cornell Univ., USA.

    Google Scholar 

  16. Renk, K. F., Phys. Lett. 20, 137 (1966).

    Article  ADS  Google Scholar 

  17. Weber, R. und Nette, P., Phys. Lett. 20, 493 (1966).

    Article  ADS  Google Scholar 

  18. Schäfer, G., J. Phys. Chem. Solids 12, 233 (1960).

    Article  ADS  Google Scholar 

  19. Mitsuishi, A. und Yoshinaga, H., Progr. Theor. Phys. Suppl. 23, 241 (1962).

    Article  ADS  Google Scholar 

  20. Fritz, B., Groß, U. und Bäuerle, D., Physica Stat. Sol. 11, 231 (1965).

    Article  ADS  Google Scholar 

  21. Dötsch, H., Gebhardt, W. und Martius, Ch., Solid State Comm. 3, 297 (1965).

    Article  Google Scholar 

  22. Dettmann, K. und Ludwig, W., Phys. Stat. Sol. 10, 689 (1965).

    Article  ADS  Google Scholar 

  23. Jaswal, S. S., Phys. Rev. 137, A302 (1965). *** DIRECT SUPPORT *** A00AX006 00003

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

O. Madelung

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Friedr. Vieweg & Sohn GmbH, Verlag

About this chapter

Cite this chapter

Genzel, L. (1967). Optische Absorption von Festkörpern durch Gitterschwingungen. In: Madelung, O. (eds) Festkörper Probleme VI. Advances in Solid State Physics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0109109

Download citation

  • DOI: https://doi.org/10.1007/BFb0109109

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75319-3

  • Online ISBN: 978-3-540-75320-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics