Advertisement

Avalanche Breakdown in Silicon

  • A. Goetzberger
Chapter
  • 100 Downloads
Part of the Advances in Solid State Physics book series (ASSP, volume 3)

Abstract

A review of recent theoretical and experimental work in the field of avalanche breakdown in silicon is given. By using Baraff’s [1] theoretical curves, one can interpret measurements of current multiplication. The majority of junctions contain points of lower breakdown voltage, the so-called microplasmas. It can be shown that these microplasmas are correlated with crystal imperfections, most likely oxide precipitates. Multiplication measurements with very small light spots can be used to determine the effective area of microplasmas. A model describing most properties of microplasmas has been developed. Techniques for the fabrication of microplasma-free junctions have also been developed. It has been shown that there is no basic difference in the mechanism governing breakdown in microplasmas and microplasma-free junctions. Striations of resistivity in the crystal material were discovered by means of light emission from microplasma-free junctions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. A. Baraff, Phys. Rev. 128, 2507 (1962).zbMATHCrossRefADSGoogle Scholar
  2. [2]
    C. T. Sah, R. N. Noyce and W. Shockley, Proc. IRE 45, 1228 (1957).CrossRefGoogle Scholar
  3. [3]
    K. B. McAffee, E. J. Ryder, W. Shockley and M. Sparks, Phys. Rev. 83, 650 (1951).CrossRefADSGoogle Scholar
  4. [4]
    C. Zener, Proc. Royal Soc. (London), 145, 523 (1934).zbMATHCrossRefADSGoogle Scholar
  5. [5]
    K. G. McKay and K. B. McAffee, Phys. Rev. 91, 1079 (1953).CrossRefADSGoogle Scholar
  6. [6]
    S. L. Miller, Phys. Rev. 105, 1246 (1957).CrossRefADSGoogle Scholar
  7. [7]
    W. Shockley, Solid State Electronics 2, 35 (1961).CrossRefADSGoogle Scholar
  8. [8]
    K. G. McKay, Phys. Rev. 94, 877 (1954).CrossRefADSGoogle Scholar
  9. [9]
    See L. B. Loeb, Fundamental Processes of Electrical Discharge in Gases, (John Wiley and Sons, Inc., New York, 1939, p. 372 ff).Google Scholar
  10. [10]
    P. A. Wolff, Phys. Rev. 95, 1415 (1954).CrossRefADSGoogle Scholar
  11. [11]
    R. H. Haitz, Bull. Am. Phys. Soc. II, 7, 603 (1962).Google Scholar
  12. [12]
    R. L. Batdorf, A. G. Chynoweth, G. C. Dacey and P. W. Foy, J. Appl. Phys. 31, 1153 (1960).CrossRefADSGoogle Scholar
  13. [13]
    A. Goetzberger, B. McDonald, R. H. Haitz and R. M. Scarlett, J. Appl. Phys., 34, 1591 (1963).CrossRefADSGoogle Scholar
  14. [14]
    A. G. Chynoweth, Phys. Rev. 109, 1537 (1958).CrossRefADSGoogle Scholar
  15. [15]
    A. G. Chynoweth, J. Appl. Phys. 31, 1161 (1960).CrossRefADSGoogle Scholar
  16. [16]
    C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleimack and W. Wiegmann, Bull. Am. Phys. Soc. II, 7, 536 (1962).Google Scholar
  17. [17]
    R. A. Logan, A. G. Chynoweth and B. G. Cohen, Phys. Rev. 128, 2518 (1962).CrossRefADSGoogle Scholar
  18. [18]
    J. J. Moll and N. I. Meyer, Solid State Electronics 3, 155 (1961).CrossRefADSGoogle Scholar
  19. [19]
    R. H. Haitz, A. Goetzberger, R. M. Scarlett and W. Shockley, J. Appl. Phys. 34, 1581 (1963).CrossRefADSGoogle Scholar
  20. [20]
    R. Newman, Phys. Rev. 100, 700 (1955).CrossRefADSGoogle Scholar
  21. [21]
    A. G. Chynoweth and G. L. Pearson, J. Appl. Phys. 29, 1103 (1958).CrossRefADSGoogle Scholar
  22. [22]
    A. Goetzberger and C. Stephens, J. Appl. Phys. 32, 2646 (1961).CrossRefADSGoogle Scholar
  23. [23]
    H. J. Queisser and A. Goetzberger, Phil. Mag. 8, 1063 (1963).CrossRefADSGoogle Scholar
  24. [24]
    R. Finch, H. J. Queisser, G. Thomas and J. Washburn, J. Appl. Phys. 34, 406 (1963).CrossRefADSGoogle Scholar
  25. [25]
    R. J. McIntyre, J. Appl. Phys. 32, 983 (1961).CrossRefADSGoogle Scholar
  26. [26]
    H. J. Queisser, K. Hubner and W. Shockley, Phys. Rev. 123, 1245 (1961).CrossRefADSGoogle Scholar
  27. [27]
    B. Senitzky and J. L. Moll, Phys. Rev. 110, 612 (1958).CrossRefADSGoogle Scholar
  28. [28]
    K. S. Champlin, J. Appl. Phys. 30, 1039 (1959).CrossRefADSGoogle Scholar
  29. [29]
    D. J. Rose, Phys. Rev. 105, 413 (1957).CrossRefADSGoogle Scholar
  30. [30]
    R. H. Haitz, Bull. Am. Phys. Soc. II, 7, 536 (1962).Google Scholar
  31. [31]
    I. Ruge and G. Keil, Rev. Sc. Instr. 34, 390 (1963).CrossRefADSGoogle Scholar
  32. [32]
    W. Shockley, personal communication.Google Scholar
  33. [33]
    A. Goetzberger, J. Appl. Phys. 31, 2260 (1960).CrossRefADSGoogle Scholar
  34. [34]
    R. H. Haitz and A. Goetzberger, Solid State Electronics 6, 678 (1963).CrossRefADSGoogle Scholar
  35. [35]
    J. L. Moll and R. van Overstraeten, Solid State Electronics 6, 147 (1963).CrossRefADSGoogle Scholar
  36. [36]
    A. G. Chynoweth, personal communication.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn 1964

Authors and Affiliations

  • A. Goetzberger
    • 1
  1. 1.Shockley Laboratory of Clevite TransistorPalo Alto

Personalised recommendations