Skip to main content

Physik und Technik «schneller Transistoren»

  • Chapter
  • First Online:
Festkörperprobleme 2

Part of the book series: Advances in Solid State Physics ((ASSP,volume 2))

  • 51 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. R. L. Pritchard, Small signal parameters for Transistors, Electr. Engng. 73, 903 (Oct. 1954).

    Google Scholar 

  2. R. L. Pritchard, High-frequency power gain of junction transistors, Proc. IRE 43, 1075–1085 (1955). Siehe zusätzlich auch Ergänzung in Transistor Technologie 2, 361 (D. v. Nostrand, Princeton, N. J. 1958).

    Google Scholar 

  3. L. I. Giacoletto, Study of npn-junction transistor from DC through medium frequency, RCA Review 15, 506 (1954).

    Google Scholar 

  4. J. B. Angell, High-frequency and video amplifiers in «Handbook of semiconductor electronics» (L. P. Hunter) McGraw Hill, New York 1956.

    Google Scholar 

  5. Siehe hierzu etwa R. Feldtkeller, Vierpoltheorie, S. Hirzel, Zürich 1953 oder W. W. Gärtner, Transistors (D. v. Nostrand, Princeton N. J. 1960).

    Google Scholar 

  6. S. J. Mason, Power gain in feedback amplifiers, Trans. IRE CT-1, No. 2, 20–25 (June 1954).

    Google Scholar 

  7. P. R. Drouilhet, Predictions based on the maximum oscillator frequency of a transistor, Trans. IRE CT-2, No. 2, 178–183 (1955).

    Google Scholar 

  8. J. D. McCotter, M. J. Walker, M. M. Fortini, Coaxially packaged MADT for microwave applications, IRE Trans. ED 8, 8–12 (1961).

    Google Scholar 

  9. N. Kozuma, I. Miwa, High-frequency available power gain of diffused-based transistors, Proc. IRE 50, 199–200 (1962).

    Google Scholar 

  10. I. Lindmayer, Power gain of transistors at high frequencies. Solid-State Electronics 5, 171–175 (1962).

    Article  ADS  Google Scholar 

  11. E. Ryder, Mobility of electrons and holes in high electric fields, Phys. Rev. 90, 766 (1953).

    Article  ADS  Google Scholar 

  12. Siehe z. B. L. P. Hunter in: Handbook of semiconductor electronics, McGraw Hill, New York 1956.

    Google Scholar 

  13. I. M. Early, Structure-determined gain-band product of junction triode transistors, Proc. IER 46, 1924–1927 (1958).

    Article  Google Scholar 

  14. W. M. Webster, On the variation of junction-transistor current amplification factor with emitter current, Proc. IRE 42, 914–920 (1954).

    Article  Google Scholar 

  15. R. L. Pritchard, Frequency variations of junction-transistor parameters, Proc. IRE 42, 786–799 (1954).

    Article  Google Scholar 

  16. R. M. Middlebrook, An introduction to junction transistor-theory, J. Wiley & Sons, New York 1957.

    Google Scholar 

  17. H. Krömer, Zur Theorie des Diffusions—und des Drifttransistors, AEÜ 8, 223–228, 363–369, 499–504 (1954).

    Google Scholar 

  18. D. E. Thomas, J. L. Moll, Junction transistor short-circuit curent gain and phase determination, Proc. IRE 46, 1177–1184 (1958).

    Article  Google Scholar 

  19. J. te Winkel, Drift transistor simplified electrical characterization, Electronic and Radio Engng. 36, 280–288 (1959).

    Google Scholar 

  20. L. J. Varnerin, Stored charge method of transistor base transit analysis, Proc. IRE 47, 523–527 (1959).

    Article  Google Scholar 

  21. Siehe z. B. J. Lindmayer, C. Wrigley, The high-injection-level-operation of drift transistors, Solid State Electr. 2, 79 (1961).

    Article  ADS  Google Scholar 

  22. R. Wiesner: Physikalische und technologische Grenzen des Hochfrequenztransistors, Nachrichtentechnische Fachberichte, Beihefte der NTZ 18, 19–29 (1960).

    Google Scholar 

  23. J. Lindmayer, C. Wrigley, Alpha cutoff frequency of junction transistors, Solid-State Electronics 2, 247–258 (1961).

    Article  ADS  Google Scholar 

  24. R. L. Pritchard, Effect of base-contact overlap and parasitic capacities on small-signal parameters of junction transistors, Proc. IRE 43, 38–40 (1955).

    Google Scholar 

  25. A. van der Ziel: Semiconductor noise in “Noise in Electron Devices” by L. D. Smullin, H. A. Haus; Technological Press of Massachusetts Institute of Technology and J. Wiley & Sons, New York 1959, S. 311.

    Google Scholar 

  26. W. H. Fonger, A determination of 1/f-noise sources in semiconductor diodes and triodes, RCA Laboratories (1956), Transistors I, S. 239–295.

    Google Scholar 

  27. A. van der Ziel, Noise in junction transistors, Proc. IRE 46, 1019–1038 (1958).

    Article  Google Scholar 

  28. W. Guggenbühl, M. J. O. Strutt, Experimentelle Untersuchung und Trennung der Rauschursachen in Flächentransistoren, AEÜ 9, 259–269 (1955).

    Google Scholar 

  29. R. H. Kingston, A. L. McWhorter, Relaxation time of surface states on germanium, Phys. Rev. 103, 534–540 (1956).

    Article  ADS  Google Scholar 

  30. A. L. McWhorter, R. L. Kingston: Channels and excess reverse current in grown germanium pn-junction diodes, Proc. IRE 42, 1376–1380 (1954).

    Article  Google Scholar 

  31. E. R. Chenette, Measurement of the correlation between flicker noise sources in transistors, Proc. IRE 46, 1304 (1958).

    Google Scholar 

  32. T. B. Watkins, 1/f-noise in germanium devices, Proc. Phys. Soc. 73, 59–68 (1959).

    Article  ADS  Google Scholar 

  33. S. Deb, A. N. Daw: Variation of L.F.-noise figure of a junction transistor. J. Brit. IRE 31, 49–56 (1961).

    Google Scholar 

  34. L. Cacagno, R. E. Hobson, Low noise characteristics of silicon mesa transistors, Electronic Components conference 1961, San Francisco.

    Google Scholar 

  35. W. Guggenbühl, M. J. O. Strutt, Theorie des Hochfrequenzrauschens von Transistoren bei kleinen Stromdichten, Nachrichtentechnische Fachberichte, Beihefte der NTZ 5, 30–33 (1956).

    Google Scholar 

  36. W. Guggenbühl, B. Schneider, M. J. O. Strutt, Messungen über das Hochfrequenzrauschen von Transistoren, Nachrichtentenchnischen Fachberichte Beihefte der NTZ 5, 34–36 (1956).

    Google Scholar 

  37. Siehe hier etwa G. Winkler, Das Rauschersatzschaltbild des Transistors, Nach-richtentechnik 8, 542–548 (1958).

    Google Scholar 

  38. W. Guggenbühl, M. J. O. Strutt, Theory and experiments of shot noise in semiconductor junction diodes and transistors, Proc. IRE 45, 839–854 (1957).

    Google Scholar 

  39. A. van der Ziel, A. G. T. Becking, Theory of junction diode and junction transistor noise, Proc. IRE 46, 589–594 (1958).

    Article  Google Scholar 

  40. E. G. Nielsen, Behavior of noise figure in junction transistors, Proc. IRE 45, 957–963 (1957).

    Google Scholar 

  41. G. H. Hanson, A. van der Ziel, Shot noise in transistors, Proc. IRE 45, 1538–1542 (1957).

    Google Scholar 

  42. J. M. Stewart, The noise figure of junction transistors, Proc. IRE 106, Part B, Suppl. 17, 1056–1066 (1959).

    Google Scholar 

  43. J. S. Vogel, M. J. O. Strutt, Das Rauschen von Transistor-Mischstufen, AEÜ 16, 215–222 (1962)

    Google Scholar 

  44. W. Guggehbühl, M. J. O. Strutt, Experimentelle Bestätigung der Schottkyschen Rauschformeln an neueren Halbleiterflächendioden im Bereich des weißen Rauschspektrums, AEÜ 19, 103–108 (1955).

    Google Scholar 

  45. W. Schottky, Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern, Ann. Phys. 57, 541 (1918).

    Article  Google Scholar 

  46. A. van der Ziel, Shot noise in junction diodes and transistors, Proc. IRE 43, 1639–1646 (1955).

    Google Scholar 

  47. B. Schneider, M. J. O. Strutt, Über die Kennlinien und das Rauschen von Silicium-pn-Dioden und Siliciumtransistoren, AEÜ 12, 429–490 (1958).

    Google Scholar 

  48. B. Schneider, M. J. O. Strutt, Rauschen von Germanium-und Siliciumtransistoren im Hochstrombereich, AEÜ 13, 495–502 (1959).

    Google Scholar 

  49. A. van der Ziel, Shot noise in transistors, Proc. IRE 48, 114–115 (1960).

    Google Scholar 

  50. B. Schneider, M. J. O. Strutt: Shot and thermal noise in germanium and silicon transistors at high-level current injections, Proc. IRE 48, 1731–1739 (1960).

    Article  Google Scholar 

  51. E. R. Chenette, Frequency dependence of the noise and the current amplification factor of silicon transistors, Proc. IRE 48, 111–112 (1960).

    Google Scholar 

  52. A. Baelde, The influence of non-uniform based width on the noise of transistors, Philips Res. Rep. 16, 225–236 (1961).

    Google Scholar 

  53. F. J. Hyde, H. J. Roberts, Excess high-frequency noise in junction transistors, Proc. Phys. Soc. 78, 1076–1077 (1961).

    Article  ADS  Google Scholar 

  54. L. J. Giacoletto, Comparative high-frequency operation of junction transistors mode of different semiconductor materials, RCA Rev. 16, 534–542 (1955).

    Google Scholar 

  55. D. A. Jenny, The status of transistor research in compound semiconductors, Proc. IRE 46, 959–968 (1958).

    Article  Google Scholar 

  56. A. E. Anderson, Transistors in switching circuits, Proc. IRE 40, 1541–1558 (1952).

    Article  Google Scholar 

  57. J. L. Moll, Large signal transient response of junction transistors, Proc. IRE 42, 1773–1784 (1954).

    Article  Google Scholar 

  58. J. J. Ebers, J. L. Moll, Large signal behavior of junction transistors. Proc. IRE 42, 1761–1772 (1954).

    Article  Google Scholar 

  59. J. M. Early, Effects of space-charge layer widening in junction transistors, Proc. IRE 40, 1401–1406 (1952).

    Article  Google Scholar 

  60. J. J. Ebers, S. L. Miller, Design of alloyed junction germanium transistor for high-speed switching, Bell. Syst. Techn. J. 34, 761–781 (1955), s. auch in Transistor Technology II, Herausgeber F. J. Biondy, 1958, Bell. Lab. Series.

    Google Scholar 

  61. R. Beaufoy, J. J. Sparkes, The junction transistor as a charge-controlled device, ATE Journ. 13, 310–327 (1957).

    Google Scholar 

  62. J. J. Sparkes, A study of charge control parameters of transistors, Proc. IRE 48, 1696–1705 (1960).

    Article  Google Scholar 

  63. R. Beaufoy, Transistor switching-circuit design using the charge-control parameters, Proc. IRE 106 B, Suppl. 17, 1085–1091 (1959) (International convention on Transistors, London).

    Google Scholar 

  64. C. le Can, Übergansverhalten und einige grundsätzliche Kennwerte von Transistoren, Valvo Berichte 7, 55–76 (1961).

    Google Scholar 

  65. A. Kruithof, Transient response of junction transistors and its graphical representation, Proc. IRE 106 B, Suppl 17, 1092–1101 (1959) (Internat. Conv. of Transistors London).

    Google Scholar 

  66. V. H. Grinich, R. N. Noyce, Switching time calculations for diffused base transistors, IRE Wescon Conv. Rec. Vol. 2 Pt 3-ED, 141–147 (1958).

    Google Scholar 

  67. J. T. Nelson, J. E. Iwersen, F. Keywell, A five-watt, ten magacycle transistor, IRE Wescon. Conv. Rec. Vol. 1 Pt 3-ED, 40 (1957), u. Proc. IRE 46, 1209–1215 (1958).

    Google Scholar 

  68. W. Shockley, Transistor electronics: Imperfections, unipolar and analog transistors, Proc. IRE 40, 1289–1313 (1952).

    Article  Google Scholar 

  69. L. J. Varnerin, Stored charge method of transistor base transit analysis, Proc. IRE 47, 523–527 (1959).

    Article  Google Scholar 

  70. M. A. Abdiukhanov, G. N. Berestovskii, U. A. Kuz’Min, On the calculation of transistor processes by the charge method, Radiotekhnika i Electronika 5, 450–459 (1960), übersetzt in Radio Engng. and Electronics 5 (1960).

    Google Scholar 

  71. H. Krömer, Der Drifttransistor, Naturwissenschaften 40, 578–579 (1953).

    Article  ADS  Google Scholar 

  72. H. Krömer, The driftransistor, RCA Rev. in Transistor I, 202–220 (1956), published by RCA, Princeton N.J.

    Google Scholar 

  73. J. M. Early, pnip and npin-junction transistor triodes, Bell. Syst. Techn. J. 33, 517–533 (1954).

    Google Scholar 

  74. D. G. Stroh, Static electric can kill transistors, Electronics 35, 90–92 (1962).

    Google Scholar 

  75. Siehe z. B. F. M. Smits: Formation of junction structures by solid-state diffusion, Proc. IRE 46, 1049–1061 (1958); oder C. S. Fuller, Formation of junctions by diffusion in Transistor Technology III, 64–89, edited by F. J. Biondi (D. v. Nostrand 1958).

    Article  Google Scholar 

  76. R. C. Miller, F. M. Smits, Diffusion of antimony out of germanium and some properties of the antimony-germanium system, Phys. Rev. 107, 65–70 (1957).

    Article  ADS  Google Scholar 

  77. W. E. Bradley, J. W. Tiley, R. A. Williams, J. B. Angell, F. P. Keiper, R. Kansas, R. F. Schwarz, J. F. Walsh, The surface barrier transistor, Proc. IRE 41, 1702 (1953).

    Article  Google Scholar 

  78. C. G. Thornton, I. B. Angell, Technology of micro-alloy diffused transistors, Proc. IRE 46, 1166–1176 (1958).

    Article  Google Scholar 

  79. J. M. Carroll, Waht’s new in semiconductors, Electronics 34, 89–120 (1961).

    Google Scholar 

  80. C. A. Lee: A high frequency diffused base germaniun transistor, Bell. Syst. Techn. J. 35, 23–34 (1956).

    Google Scholar 

  81. H. Dorendorf, H. Rebstock, Der Germanium-Mesatransistor, Siemens Z. 35, 602–609 (1961).

    Google Scholar 

  82. C. W. Müller, J. Hilibrand, The “Thyristor” a new high-speed switching transistor. IRE Trans. ED-5, 2–5 (1958).

    Article  Google Scholar 

  83. H. Christensen, Electrical contacts with termocompression bonds, Bell. Lab. Rec. 36, 127–130 (1958).

    Google Scholar 

  84. H. E. Talley, A family of diffused base germanium transistors, IRE Wescon. Vonv. Rec. Pt 3 B 115–121 (1958).

    Google Scholar 

  85. R. M. Warner, J. M. Early, G. T. Loman, Characteristic structure and performance of a diffused-base germanium oscillator transistor, IRE Trans. ED-5, 127–130 (1958).

    Article  Google Scholar 

  86. C. H. Knowles, New transistor design “The Mesa”, Electronic Industries 17, Nr. 8, 55–60 (1958).

    Google Scholar 

  87. R. E. Warren, Germanium high frequency mesa transistors Brit. Commun. u. Electronics 8, 174–177 (1961).

    ADS  Google Scholar 

  88. J. M. Early, Structure-determined gain-bond product of junction tirode transistors, Proc. IRE 46, 1924–1927 (1958).

    Article  Google Scholar 

  89. J. T. Nelson, A. g. Foyt, Germanium transistors for operating above 1 KMC, Meeting of Electron Devices (Oct. 1961), Washington D. C.

    Google Scholar 

  90. E. Fröschle, Zur Theorie der Transistoren für hohe Frequenzen, Z. angew. Physik 14, 288–297 (1962).

    Google Scholar 

  91. D. Grandberry, D. D. Martin, E. Orris, C. M. Chang, A germanium ultra-high switching transistor, Meeting of Electron Devices (Oct. 1961), Washington D. C.

    Google Scholar 

  92. W. A. Rheinfelder, Extending the high-frequency response of transistor amplifiers, Electr. Design. 9, Heft 25, 36–39, u. Heft 26, 48–51 (1961).

    Google Scholar 

  93. R. L. Pritchart, Two-dimensional current flow in junction transistors at high frequencies, Proc. IRE 46, 1152–1160 (1958).

    Article  Google Scholar 

  94. J. R. A. Beale, A. F. Beer, A study of large-signal high-frequency effects in junction transistors using analog techniques, Proc. IRE 50, 66–77 (1962).

    Article  Google Scholar 

  95. W. C. Dunlap, Diffusion of impurities in germanium, Phys. Rev. 94, 1531–1540 (1954).

    Article  ADS  Google Scholar 

  96. P. J. W. Jochems, O. W. Memelink, L. J. Tumers, Construction and electrical properties of a germanium alloy-diffused transistor, Proc. IRE 46, 1161–1165 (1958).

    Article  Google Scholar 

  97. J. R. A. Beale, Alloy-diffusion: a process for making diffused-based junction transistors, Proc. Phys Soc. (London) 70B, 1087–1089 (1957).

    ADS  Google Scholar 

  98. W. Edlinger, High frequency transistors, by the alloy-diffusion technique, Colloque International sur les Dispositifs a Semiconducteurs, Paris 1961, Vol. 1, 209–215, Editions Chiron, 40, Rue de Seine, Paris 6.

    Google Scholar 

  99. I. R. A. Beale, A. F. Beer, Deutsche Patentauslegeschrifts 1121224 vom 4.1.1962.

    Google Scholar 

  100. M. Tanenbaum, D. E. Thomas, Diffused emitter and base silicon transistors, Bell. Syst. Techn. J. 35, 1–22 (1956).

    Google Scholar 

  101. C. S. Fuller, J. A. Ditzenberger, Diffusion of donor and acceptor elements in silicon, J. Appl. Phys. 27, 544–553 (1956).

    Article  ADS  Google Scholar 

  102. C. J. Frosch, L. Derick, Surface protection and selective masking during diffusion in silicon, J. Electrochem. Soc. 104, 547–552 (1957).

    Article  Google Scholar 

  103. L. A. D. Asaro, Diffusion and oxyde masking in silicon by the box method, Solid State Electronics 1, 3–12 (1960).

    Article  ADS  Google Scholar 

  104. W. A. Little, A pnp high-frequency silicon transistor, J. Electrochem. Soc. 107, 789 (1960).

    Article  Google Scholar 

  105. J. T. Nelson, J. E. Iwersen, F. Keywell, A five-watt ten-megacycle transistor, Proc. IRE 46, 1209–1215 (1958).

    Article  Google Scholar 

  106. J. A. Aschner, C. A. Bittermann, W. F. J. Hare, J. J. Kleimack, A double diffused silicon high-frequency switching transistor produced by oxide masking techniques, J. Electrochem. Soc. 106, 415–417 (1959).—A silicon medium-power transistor for high-current high-speed switching applications, IRE Trans. ED-7, 251–256 (1960).

    Article  Google Scholar 

  107. J. C. Haenichen, T. R. Huffmann, J. E. Muschinske, P. T. Robinson, Design of a high-frequency transistor with star geometrie, Meeting on Electron Devices 1961, Washington, D.C.

    Google Scholar 

  108. J. R. Nall, J. W. Lathrop, The use of photolithographic techniques in transistor fabrication, Diamond Ordnance Fuze laboratories Report Nr. TR-608, 3–18 (1. June 1958).

    Google Scholar 

  109. T. C. Hellmers, J. R. Nall, Microphotographs for electronics, Semiconductor Products 4, 37–42 (1961).

    Google Scholar 

  110. E. L. Jordan, A diffusion mask for germanium, J. Electrochem. Soc. 108, 478–481 (1961).

    Article  Google Scholar 

  111. R. M. Folsom, W. A. Pieczonka, P. P. Dastrucci, M. M. Roy, A high speed medium power, all-diffused germanium npn-mesa-transistor, IBM Technical Publication TR 00851; Vorgetragen: IRE Conv. New York; 26 March 1962.

    Google Scholar 

  112. A. W. Berger, R. M. Folsom, W. E. Harding, W. E. Mutter, Diffusion masking and all diffused germanium npn mesa transistor, IRE Electron Device Meeting 1959, Washington D. C.

    Google Scholar 

  113. R. A. Jacobs, R. R. Abshire, R. W. Wilson, H. Anetsman, A npn-germanium double-diffused mesa transistor, Electron Devices Meeting 1961, Washington D.C.

    Google Scholar 

  114. J. A. Hoerni, Planar silicon transistors and diodes, Electron Devices Meeting 1960, Washington D.C.

    Google Scholar 

  115. V. H. Grinich, J. A. Hoerni, The planar transistor family, Colloque International sur les Dispositifs a semiconducteurs, Paris 1961, Vol. I, 132; Editions Chiron, 40 Rue de Seine, Paris 6e.

    Google Scholar 

  116. R. Saintesprint, Sur la diffusion des elements des collonnes III et V dans le silicium, Solid State Electronics 1, 123–130 (1960).

    Article  ADS  Google Scholar 

  117. A. D. Kurtz, R. Yee, Diffusion of boron into silicon, J. Appl. Phys. 31, 303–305 (1960).

    Article  ADS  Google Scholar 

  118. D. F. Allison, O. Baker, G. E. Moore, KMC silicon planar transistor, Electron Devices Meeting 1961, Washington D. C.

    Google Scholar 

  119. K. Simonyan, P. Constantakes, Planar germanium diodes and transistors, Electron Devices Meeting 1961, Washington D. C.

    Google Scholar 

  120. R. L. Wallace, L. G. Schimpf, E. A. Dickten, A junction transistor tetrode for high frequency use, Proc. IRE 40, 1395–1400 (1952).

    Article  Google Scholar 

  121. S. L. Miller, Addendum zu Nachdruck [120] in Transistor Technology II, 468–471; Bell. Lab. Series (1958).

    Google Scholar 

  122. W. Shockley, A unipolar “Field Effect” transistor, Proc. IRE 40, 1365–1376 (1952).

    Article  Google Scholar 

  123. G. C. Dacey, I. M. Ross, The field-effect transistor, Bell. Syst. Techn. J. 34, 1149–1189 (1955).

    Google Scholar 

  124. H. Rüchardt, Sonderformen von HF-Transistoren, Nachrichtentechnische Fachberichte, Beihefte der NTZ, 18, 39–48 (1960).

    Google Scholar 

  125. S. Teszner, M. Thue, Le tecnetron, nouvelle etape de developpement des dispositifs a semi-conducteurs, Bull. soc. franc. Elect 8, 683–700 (1958). S. Teszner, DPA Auslegeschrift 1 013796 und 1 034775. S. Teszner, Sur les nouvelles structures du tecnetron, Colloque International sur les Dispositifs a semiconducteurs, Paris 1961, Vol. I, 461, Editions Chiron, 40 Rue de Seine, Paris 6e.

    Google Scholar 

  126. W. A. Bösenberg, J. A. Olmstead, K. Wybrands, Design and applications of silicon unipolar transistors made by diffusion techniques. Electron Devices Meeting 1961, Washington D. C.

    Google Scholar 

  127. P. K. Weimer, Evaporated circuits incorporating a thin-film-transistor, International Solid State Circuits Conference Philadelphia (Penn.) Febr. 1962.

    Google Scholar 

  128. I. Halpern, R. H. Redicker, Outdiffusion as a technique for the production of diodes and transistors, Proc. IRE 46, 1068–1076 (1958).

    Article  Google Scholar 

  129. H. Statz, R. A. Pucel, The spacistor, a new class of high-frequency semiconductor devices, Proc. IRE 45, 317–325 (1957). H. Statz, R. A. Pucel, C. Lanza, High frequency semiconductor spacistor tetrodes, Proc. IRE 45, 1475–1483 (1957).

    Google Scholar 

  130. W. W. Gärtner, Design Theory for depletion layer transistors, Proc. IRE 45, 1392–1400 (1957).

    Google Scholar 

  131. H. F. Matare, Diskussionsbemerkung zu “Sonderformen von HF-Transistoren”, Nachrichtentechnische Fachberichte, Beihefte der NTZ 18 (1960). O. A. Weinreich, H. F. Matare, B. Reed: The grain boundary amplifier, Proc. Phys. soc. 73, 969–972 (1959).

    Google Scholar 

  132. H. Salow, W. V. Münch, Über einen Schalttransistor mit kurzen Sprungzeilen, Z. angew. Phys. 8, 114–119 (1956). W. v. Münch, H. Salow, A silicon switching transistor, Colloque International sur les Dispositifs a Semiconducteurs, Paris 1961, Vol.I, 89, Editions Chiron, Paris 6e.

    Google Scholar 

  133. R. Dahlberg, Ausführungsformen von Hochfrequenz-Transistorsystemen, Nachrichtentechnische Fachberichte, Beihefte der NTZ 18, 31–38 (1960).

    Google Scholar 

  134. H. Matare, Recent development in the field of semiconductor devices for high frequencies, Fortschritte d. HF-Technik 5, 347–412 (1960).

    Google Scholar 

  135. M. E. Jones, E. C. Wurst, Recent advances in GaAs-transistors, IRE International Conv. Rec. 9, 3, 26–29 (1961).

    Google Scholar 

  136. M. E. Jones, E. C. Wurst, H. L. Henneke, Intermetallic transistors, Colloque International sur les Dispositifs a Semiconducteurs, Paris, 1961, Vol. I, 193–200, Editions Chiron, Paris.

    Google Scholar 

  137. S. Mayburg, Direct recombination in GaAs and some consequences in transistor design, Solid State Electronics 2, 195–201 (1961)

    Article  ADS  Google Scholar 

  138. H. L. Henneke, Indium antimonide transistors, Solid State Electronics 3, 159–166, (1961).

    Article  ADS  Google Scholar 

  139. R. E. Davis, C. A. Bittmann, R. J. Gnaedinger, Microwave germanium transistor, IRE Meeting EGED Washington D. C. (Oct. 1959). v. R. Saari, R. J. Kirkpatrick, C. A. Bittmann, R. E. Davis, Circuit applications of a coaxially encapsulated microwave transistor, Intern. Solid State Circuits Conference (Febr. 1960) Philadelphia (Penn.).

    Google Scholar 

  140. H. C. Theuerer, J. J. Kleinmark, H. H. Loar, H. Christensen, Epitaxial diffused transistor, Proc. IRE 48, 1642–1643 (1960). H. C. Theuerer: Epitaxial silicon films by the hydrogen reduction of SiCl4, J. Electrochem. Soc. 108, 649–653 (1961).

    Google Scholar 

  141. Verschiedene Vorträge auf den Tagungen: IRE Meeting on Electr. Dev. 1960 (Washington D. C.), Electrochem. Society (Oct. 1960), Houston, Texas; Wescon. Show (Aug. 1960), Los Angeles, Californien.

    Google Scholar 

  142. O. Weinreich, G. Dermit, C. Tufts, Germanium films obtained by thermal evaporation in vacuum, J. Appl. Phys. 32, 1170–1171 (1961). J. E. Davoy, Epitaxy of germanium films on germanium by vacuum evaporation, J. Appl. Phys. 33, 1015–1016 (1962). G. A. Kurov, S. A. Semiletov, Z. G. Pinsker, An investigation of vacuum-evaporated single-crystal germanium films, Soviet Phys. Doklady 1, 604–606 (1957); übersetzt DAN 110, 970–971 (1956).

    Article  ADS  Google Scholar 

  143. Siehe z. B. J. Sigler, S. B. Watelski: Epitaxial techniques in semiconductor devices, Solid State J. 2, 33–37 (1961).

    Google Scholar 

  144. J. C. Marinace, Epitaxial vapor growth of Ge single crystals in a closed-cycle process, IBM Journal of research and development 4, 248–255 (1960).

    Article  Google Scholar 

  145. Sammelheft IBM Journal of research and development 4 (July 1960). M. J. O’Rourke, J. C. Marinace, R. L. Anderson, W. H. White, Electrical properties of vapor-grown Ge junctions, p. 256. W. E. Baker, D. M. J. Compton, Radiotracer studies of the incorporation of iodine into vaper-grown Ge, p. 269. W. E. Baker, D. M. J. Compton, Incorporation of As into vapor-grown Ge, p. 275. E. S. Waida, B. W. Kippenhan, W. H. White, Epitaxial growth of silicon, p. 188. R. Glang, B. W. Kippenhan, Impurity introduction during epitaxial growth of silicon, p. 299. H. S. Ingham, P. J. McDade, Dislocation content in epitaxial vapor-grown Ge crystals, p. 302.

    Google Scholar 

  146. A. Mark, Growth of single crystal silicon overgrowth on silicon substrates, J. Electrochem. Soc. 107, 568–569 (1960).

    Article  Google Scholar 

  147. Technical Conference Metallurgy of Semiconductors, AIME, 30. Aug.—1. Sept. 1961. T. B. Light, Imperfections in Ge and Si-epitaxial films. H. Basseches, Some factors affecting the resistivity of epitaxially grown Si-layers. S. K. Tung, The influence of process parameters on the growth of epitaxial Si-films. W. J. Corrigan, Doping of silicon epitaxial layers.

    Google Scholar 

  148. B. A. I. Davis, L. J. Fey, D. D. Jones, Some aspects of the design of power transistors for high frequency amplification and for high-speed high-current switching, Colloque International sur les dispositifs a semiconducteurs Vol. I, 237–252 (Paris 1961), Editions Chiron, Paris.

    Google Scholar 

  149. R. Wiesner, Das Verhalten des Transistors bei großer Aussteuerung, NTZ 15, 323–332 (1962), sowie weitere Referate d. NTG-Tagung Aachen (1962) veröffentlicht in NTZ (1962) demnächst.

    Google Scholar 

  150. H. Rüchardt, Effekte in Mesatransistoren bei großer Stromdichte, NTZ 15, 333–340 (1962), NTG-Tagung Aachen 1962 (s. auch Vortrag auf NTG-Symposium über Transistoren bei großer Aussteuerung; Hamburg, Herbst 1961).

    Google Scholar 

  151. C. T. Sah, Effects of electrons and holes on the transistion layer characteristics of linear gradet pn-junctions, Proc. IRE 49 (1961), 603–618.

    Article  Google Scholar 

  152. Z. S. Grubnikov, Current carriers in pn-junctions. Soviet Physics-Solid State 3, 1211–1219 (1961), Übersetzt aus Fizika Tverdogo Tela 3, 6, 1668–1682, (1961).

    Google Scholar 

  153. E. J. Adirovich, I. S. Riabinkin, K. V. Temko, Equilibrium distribution of potential field and concentration of current carriers in fused junctions, Soviet J. Techn. Phys. (Übersetzung) 3, 49–59 (1958).

    Google Scholar 

  154. A. Herlet, Das Verhalten von pn-Gleichrichtern bei hohen Durchlaßbelastungen, Z. Naturforsch. 11a, 498–510 (1956).

    ADS  Google Scholar 

  155. E. Groschwitz, Nichtlineare Abweichungen vom thermodynamischen Gleichgewicht in trägerüberschwemmten Halbleitergebieten bei Stromaufprägung, Z. angew. Phys. 14 (1962), Heft 10, und 11 demnächst.

    Google Scholar 

    Google Scholar 

  156. K. E. Mortenson, High-level transistor operation and transport capacitance, IRE Trans. ED-6, Nr. 2, 174–189 (1959).

    Google Scholar 

  157. J. M. Early, Design theory of junction transistors, Bell. Syst. Techn. J. 32, 1271–1312 (1953).

    Google Scholar 

  158. W. Rosinski, Alloy diffused transistors with alpha exceeding unity, Colloque International sur les dispositifs, a semiconducteurs, Vol. I, 200–208 (1961) (Paris); Editions Chiron, Paris.

    Google Scholar 

  159. W. Shockley, Hot electrons in germanium and ohm’s law, Bell. Syst. Techn. J. 30, 990–1034 (1951).

    Google Scholar 

  160. N. H. Fletcher, The high curent limit for semiconductor junction devices, Proc. IRE 45, 862–872 (1957).

    Article  Google Scholar 

  161. R. Emeis, A. Herlet, E. Spenke, The effective emitter area of power transistors, Proc. IRE 46, 1220–1229 (1958).

    Article  Google Scholar 

  162. R. L. Pritchard, Two dimensional current flow in junction transistors, Proc. IRE 46, 1152–1160 (1958).

    Article  Google Scholar 

  163. C. T. Kirk, UHF-transistor switching theory (f T -Degradation at high current densites), Quarterly Progress Rep. Lincoln Laboratory, Solid State Res. Div. 8, group 56 und 26, 15, April 1960, S. 71–79. Stored charge in the transition-layer region of pn-junctions, loc. cit. 15. July 1961, S. 78–81, und 15. Oct. 1961, S. 57.

    Google Scholar 

  164. C. T. Kirk, A theory of transistor cutoff frequency (f T ) falloff at high current densities, IRE Trans. on Electr. Devices ED-9, 164–174 (1962).

    ADS  Google Scholar 

  165. A. Corneretto, Active-device designers turn to bulk effects, Electronic Design 10, Nr. 9, 4–10, (26. April 1962).

    Google Scholar 

  166. E. groschwitz, Verstärkung von Raumladungswellen in elektronischen Halbleitern. Z. Naturforsch. 12a, 529–532 (1957). E. Groschwitz, Zur Frage neuer Möglichkeiten der Verstärkung durch Trägerbewegung in Halbleitern, Z. angew. Phys. 12, 370–382, 400–410 (1960).

    ADS  Google Scholar 

  167. R. Zuleeg, V. W. Vodicka, Parametric amplification properties in transistors, Proc. IRE 48, 1785–1786 (1960).

    Google Scholar 

  168. V. W. Vodicka, R. Zuleeg, Transistor operation beyond cutoff frequency, Electronics 33, 57–60 (26. Aug. 1960).

    Google Scholar 

  169. R. Zuleeg, V. W. Vodicka, Microwave operation of drift transistors in transit-time mode. IRE Trans. CT-8, Nr. 4, 426–433 (Dec. 1961).

    Google Scholar 

  170. W. Shockley, Negative resistance arising from transit time in semiconductor diodes, Bell. Syst. Techn. J. 33, 799–826 (1954).

    Google Scholar 

  171. G. Weinreich, Transit time transistor, J. Appl. Phys. 27, 1025–1027 (1956).

    Article  ADS  Google Scholar 

  172. U. L. Rohde, Parametric amplification with transistors, Wireless World 67, Nr. 10, 498–499 (Oct. 1961). U. L. Rohde, Pushing transistors above their frequency limits with parametric conversion, Electronics 35, Nr. 25, 46–49 (Juni 1962).

    Google Scholar 

  173. U. L. Rohde, Very low noise transistor amplifiers in the UHF-band using the parametric conversion mode, J. IRE (London), 23, Nr. 8 (Aug. 1962).

    Google Scholar 

    Google Scholar 

  174. W. W. Gärtner, M. Schuller, Three-layer negative-resistance and inductive semiconductor diodes, Proc. IRE 49, 754–767 (1961).

    Article  Google Scholar 

  175. J. P. Spratt, R. F. Schwarz, W. M. Kane, Hot electrons in metal films “injection and collection”, Phys. Rev. Letters 6, 341–342 (1961).

    Article  ADS  Google Scholar 

  176. R. N. Hall, Current gain in metal-insulator tunnel triodes. Solid-State Electronics 3, 320–322 (1961).

    Article  Google Scholar 

  177. J. M. Lavine, A. A. Jannini, Current gain in metal-interface amplifiers, Solid-State Electr. 5, 109–110 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fritz Sauter

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Friedr. Vieweg & Sohn

About this chapter

Cite this chapter

Rebstock, H. (1963). Physik und Technik «schneller Transistoren». In: Sauter, F. (eds) Festkörperprobleme 2. Advances in Solid State Physics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108994

Download citation

  • DOI: https://doi.org/10.1007/BFb0108994

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75311-7

  • Online ISBN: 978-3-540-75312-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics