Advertisement

Experimentelle Untersuchungen zum Problem der heißen Elektronen in Halbleitern

  • K. J. S. Schmidt-Tiedemann
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 1)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    I. Adawi, Lorentzian gas and hot electrons. Phys. Rev. 112, 1567 (1958).MATHADSCrossRefGoogle Scholar
  2. [2]
    I. Adawi, Variational approach to deviations from Ohm’s law. Phys. Rev. 115, 1152 (1959).ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    I. Adawi, Variational treatment of warm electrons in nonpolar crystals. Phys. Rev. 120, 118 (1960).MATHADSCrossRefGoogle Scholar
  4. [4]
    P. N. Argyres and E. N. Adams, Longitudinal magnetoresistance in the quantum limit. Phys. Rev. 104, 900 (1956).MATHADSCrossRefGoogle Scholar
  5. [5]
    J. B. Arthur, A. F. Gibson, and J. W. Granville, The effect of high electric fields on the absorption of germanium at microwave frequencies. J. Electronics 2, 145 (1956).CrossRefGoogle Scholar
  6. [6]
    G. Ascarelli, Interaction of high-energy phonons in germanium. Phys. Rev. Letters 5, 367 (1960).ADSCrossRefGoogle Scholar
  7. [7]
    G. M. Avak’yants, Concerning the properties of germanium in a strong electric field. Sov. Physics-Solid State 2, 744 (1960).Google Scholar
  8. [8]
    T. S. Benedict and W. Shockley, Microwave observations of the collision frequency of electrons in germanium. Phys. Rev. 89, 1152 (1953).ADSCrossRefGoogle Scholar
  9. [9]
    F. Berz, On the theory of surface recombination in semiconductors for large potential differences between surface and bulk. Proc. Phys. Soc. 71, 275 (1958).CrossRefADSGoogle Scholar
  10. [10]
    J. Bok, Electrons chauds dans les semiconducteurs. Proc. Internat. Conf. Brussels 1958, 1, 475 (1960).Google Scholar
  11. [11]
    L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50, 58 (1936).MATHADSCrossRefGoogle Scholar
  12. [12]
    R. Bray and D. M. Brown, Lattice scattering mechanisms in p-type germanium. Internat. Halbl. Konf. Prag 1960.Google Scholar
  13. [13]
    B. N. Brockhouse and P. K. Iyengar, Normal modes of germanium by neutron spectrometry. Phys. Rev. 111, 747 (1958).ADSCrossRefGoogle Scholar
  14. [14]
    E. M. Conwell and V. F. Weisskopf, Theory of impurity scattering in semiconductors. Phys. Rev. 77, 388 (1950).MATHADSCrossRefGoogle Scholar
  15. [15]
    E. M. Conwell, Lattice mobility of hot carriers. J. Phys. Chem. Solids 8, 234 (1959).CrossRefADSGoogle Scholar
  16. [16]
    E. M. Conwell and A. L. Brown, Scattering of hot carriers in germanium. J. Phys. Chem. Solids 15, 208 (1960).CrossRefADSGoogle Scholar
  17. [17]
    E. M. Conwell, High-frequency conductivity and dielectric constant vs electric field intensity in geramanium. Internat. Halbl. Konf. Prag 1960.Google Scholar
  18. [18]
    L. Chih-cha’o and D. N. Nasledov, Influence of the electric field on the electrical conductivity, hall-coefficient, and magnetoresistance of n-type InSb at low temperatures. Sov. Physics-Solid State 2, 729 (1960).Google Scholar
  19. [19]
    L. W. Davies and A. R. Storm, Recombination radiation from silicon under strong-field conditions. Phys. Rev. 121, 381 (1961).ADSCrossRefGoogle Scholar
  20. [20]
    L. W. Davies, Hot electrons in semiconductors and their applications. Proc. IRE Australia 22, 151 (1961).Google Scholar
  21. [21]
    I. M. Dykman and P. M. Tomchuk, Effect of electric field on the temperature of electrons, electrical conductivity, and thermoionic emission of semiconductors. Sov. Physics-Solid State 2, 1988 (1961).Google Scholar
  22. [22]
    H. Fröhlich and B. V. Paranjape, Dielectric breakdown in solids. Proc. Phys. Soc. London B 69, 21 (1956).ADSCrossRefGoogle Scholar
  23. [23]
    R. C. Fletcher, W. A. Yager, and F. R. Merritt Observations of quantum effects in cyclotron resonance. Phys. Rev. 100, 747 (1955).ADSCrossRefGoogle Scholar
  24. [24]
    W. Franz, Integralgleichungen zur Bestimmung der Beweglichkeit in Halbleitern. Z. Naturf. 15a, 366 (1960).ADSGoogle Scholar
  25. [25]
    C. G. B. Garrett and W. H. Brattain, Some experiments on, and theory of, surface breakdown. J. Appl. Phys. 27, 299 (1956).ADSCrossRefGoogle Scholar
  26. [26]
    J. F. Gibbons, Hall-effect in high electric fields. Proc. IRE 47, 102 (1959).CrossRefGoogle Scholar
  27. [27]
    A. F. Gibson and J. W. Granville, The measurement of drift mobility in germanium at high electric fields. J. Electronics 2, 259 (1956).CrossRefGoogle Scholar
  28. [28]
    A. F. Gibson, The mobility, diffusion constant, and lifetime of minority carriers in heavily dislocated germanium. J. Phys. Chem. Solids 8 147 (1959).CrossRefADSGoogle Scholar
  29. [29]
    A. F. Gibson, J. W. Granville, and E. G. S. Paige, A study of energy-loss processes in germanium at high electric fields using microwave techniques. J. Phys, Chem. Solids 19, 198 (1961).CrossRefADSGoogle Scholar
  30. [30]
    M. Glicksman and M. C. Steele, High electric field effects in n-InSb. Phys. Rev. 110, 1204 (1958).ADSCrossRefGoogle Scholar
  31. [31]
    M. Glicksman and M. C. Steele, Hall-effect in high electric fields. Proc. IRE 47, 1781 (1959).CrossRefGoogle Scholar
  32. [32]
    L. Gold, Anisotropy of the hot electron problem in semiconductors with spheriodal energy surfaces. Phys. Rev. 104, 1580 (1956).ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    L. Gold, Hot-electron behaviour in germanium under the influence of a magnetic field. Phys. Rev. 114, 691 (1959).ADSCrossRefGoogle Scholar
  34. [34]
    L. Gold, Contribution of an orientated magnetic field to the electrical breakdown of a many-valley semiconductor. Internat. Halbl. Konf. Prag 1960.Google Scholar
  35. [35]
    L. Gold, Hot electron nonequilibrium carrier distribution in a many-valley semiconductor. J. Phys. Soc. Japan 16, 575 (1961).ADSCrossRefGoogle Scholar
  36. [36]
    R. F. Greene, Cooling of hot electrons by acoustic scattering in degenerate semiconductors. J. Electronics 3, 387 (1957).CrossRefGoogle Scholar
  37. [37]
    J. B. Gunn, A simple bridge circuit for the accurate measurement of pulse impedance. J. Sci. Instr. 33, 364 (1956).ADSCrossRefGoogle Scholar
  38. [38]
    J. B. Gunn, The field-dependence of electron mobility in germanium. J. Electronics 2, 87 (1956).CrossRefGoogle Scholar
  39. [39]
    J. B. Gunn, High electric field effects in semiconductors. Progr. in Semic. 2, 213 (1957).Google Scholar
  40. [40]
    J. B. Gunn, Effect of electron and impurity density on the field-dependence of mobility in germanium. J. Phys. Chem. Solids, 8, 239 (1959).CrossRefADSGoogle Scholar
  41. [41]
    J. B. Gunn, Private Mitteilung an S. H. Koenig, M. J. Nathan, W. Paul und A. C. Smith [53] S. H. Koenig, M. J. Nathan, W. Paul, and A. C. Smith, Effect of high pressure on some hot electron phenomena in n-type germanium. Phys. Rev. 118, 1217 (1960).Google Scholar
  42. [42]
    M. Hattori and H. Sato, Note on the field dependence of the mobility in semiconductors. J. Phys. Soc. Japan, 15, 1237 (1960).ADSMATHCrossRefGoogle Scholar
  43. [43]
    C. Herring, Transport properties of a many-valley semiconductor. B. S. T. J., 34, 237 (1955).Google Scholar
  44. [44]
    K. Hübner and W. Shockley, Transmitted phonon drag measurements in silicon. Phys. Rev. Letters, 4, 504 (1960).ADSCrossRefGoogle Scholar
  45. [45]
    W. Kaiser and G. H. Wheatley, Hot electrons and carrier multiplication in silicon at low temperature. Phys. Rev. Letters 3, 334 (1959).ADSCrossRefGoogle Scholar
  46. [46]
    Y. Kanai, Electrical conductivity in p-type InSb under strong electric field. J. Phys. Soc. Japan 13, 1065 (1958).ADSCrossRefGoogle Scholar
  47. [47]
    Y. Kanai, Electrical conductivity in n-type InSb under strong electric field. J. Phys. Soc. Japan 13, 967 (1958).ADSCrossRefGoogle Scholar
  48. [48]
    Y. Kanai, Electrical properties of n-type InSb in high electric field at 77°K. J. Phys. Soc. Japan, 14, 1302 (1959).ADSCrossRefGoogle Scholar
  49. [49]
    S. H. Koenig and G. R. Gunther-Mohr, The low temperature electrical conductivity of n-type germanium. J. Phys. Chem. Solids, 2, 268 (1957).CrossRefADSGoogle Scholar
  50. [50]
    S. H. Koenig, Possible Franck-Hertz-effect in n-type germanium at low temperatures. Bull. Amer. Phys. Soc. Ser. II 3, 112 (1958).Google Scholar
  51. [51]
    S. H. Koenig, Hot and warm electrons.—A review. J. Phys. Chem. Solids 8, 227 (1959).CrossRefADSGoogle Scholar
  52. [52]
    S. H. Koenig, Inter-electron collisions and the “temperature” of hot electrons. Proc. Phys. Soc. 73, 959 (1959).CrossRefADSGoogle Scholar
  53. [53]
    S. H. Koenig, M. J. Nathan, W. Paul, and A. C. Smith, Effect of high pressure on some hot electron phenomena in n-type germanium. Phys. Rev. 118, 1217 (1960).ADSCrossRefGoogle Scholar
  54. [54]
    M. A. Lampert, F. Herman, and M. C. Steele, Role of single phonon emission in low-field breakdown of semiconductors at low temperatures. Phys. Rev. Letters 2, 394 (1959).ADSCrossRefGoogle Scholar
  55. [55]
    R. D. Larrabee, Drift velocity saturation in p-type germanium. J. Appl. Phys., 30, 857 (1959).ADSCrossRefGoogle Scholar
  56. [56]
    B. Lax and J. G. Mavroides, Cyclotron resonance. Solid State Physics 11, 261 (1960).CrossRefGoogle Scholar
  57. [57]
    D. C. Mattis, Steady-state distribution function in dilute electron gases. Phys. Rev. 120, 52 (1960).MATHADSCrossRefGoogle Scholar
  58. [58]
    K. S. Mendelson and R. Bray, Field dependence of mobility in p-type germanium. Proc. Phys. Soc. B 70, 899 (1957).ADSCrossRefGoogle Scholar
  59. [59]
    H. J. G. Meijer and D. Polder, Note on polar scattering of conduction electrons in regular crystals. Physica 19, 225 (1953).ADSCrossRefGoogle Scholar
  60. [60]
    H. J. G. Meyer, Theory of infrared absorption by conduction electrons in germanium. J. Phys. Chem. Solids, 8, 264 (1959).CrossRefADSGoogle Scholar
  61. [61]
    T. N. Morgan, Field-induced changes in the electron distribution function for germanium in the presence of acoustical and optical mode scattering. Bull. Amer. Phys. Soc. Ser. II 3, 13 (1958).Google Scholar
  62. [62]
    T. N. Morgan, The mobility of electrons heated by microwave fields in n-type germanium. J. Phys. Chem. Solids 8, 245 (1959).CrossRefADSGoogle Scholar
  63. [63]
    T. N. Morgan and C. E. Kelly, The electric field dependence of conduction by electrons in nearly pure germanium. Internat. Halbl. Konf. Prag 1960.Google Scholar
  64. [64]
    T. N. Morgan, Electron distribution function in n-germanium. Bull. Amer. Phys. Soc. Ser. II 5, 194 (1960).Google Scholar
  65. [65]
    M. I. Nathan, Harvard University, Gordon McKay Technical Report HP-1 1958. Univeröffentlicht.Google Scholar
  66. [66]
    M. I. Nathan, Anisotropy of drift velocity vs electric field in n-type germanium. Bull. Amer. Phys. Soc. Ser. II 5, 194 (1960).Google Scholar
  67. [67]
    E. G. S. Paige, Experimental determination of electron temperature in high electric fields applied to germanium. Proc Phys. Soc. B 72, 921 (1958).CrossRefADSGoogle Scholar
  68. [68]
    E. G. S. Paige, The anisotropy of the conductivity of hot electrons and their temperature in germanium. Proc. Phys. Soc. 75, 174 (1960).CrossRefADSGoogle Scholar
  69. [69]
    B. V. Paranjape, Field dependence of mobility in semiconductors. Proc. Phys. Soc. B 70, 628 (1957).ADSCrossRefGoogle Scholar
  70. [70]
    B. V. Paranjape, Microwave heating of electrons in semiconductors. Bull. Amer. Phys. Soc. Ser. II 5, 60 (1960).Google Scholar
  71. [71]
    E. Poindexter, Piezobirefringence in diamond. Amer. Min. 40, 1032 (1955).Google Scholar
  72. [72]
    D. Polder, Private Mitteilung.Google Scholar
  73. [73]
    A. C. Prior, Avalanche multiplication and electron mobility in InSb at high electric fields. J. Electronics 4, 165 (1958).CrossRefGoogle Scholar
  74. [74]
    A. C. Prior, The field dependence of carrier mobility in silicon and germanium. J. Phys. Chem. Solids 12, 175 (1959).CrossRefADSGoogle Scholar
  75. [75]
    A. C. Prior, A reversed carrier transport effect in germanium. Proc. Phys. Soc. 76, 465 (1960).CrossRefADSGoogle Scholar
  76. [76]
    E. H. Putley, Electrical conduction in n-type InSb between 2°K and 300°K. Proc. Phys. Soc. 73, 280 (1959).CrossRefADSGoogle Scholar
  77. [77]
    C. J. Rauch and H. J. Zeiger, Private Mitteilung an B. Lax [56].CrossRefGoogle Scholar
  78. [78]
    H. G. Reik, H. Risken, and G. Finger, Theory of hot electrons in many-valley semiconductors in the region of high electric field. Phys. Rev. Letters 5, 423 (1960).ADSCrossRefGoogle Scholar
  79. [79]
    H. G. Reik, Theoretische Untersuchungen zum Problem der heißen Elektronen in Halbleitern. Halbleiterprobleme VII, 122 (1962).Google Scholar
  80. [80]
    H. G. Reik and H. Risken, Distribution functions for hot electrons in many-valley semiconductors. Phys. Rev. 124, 777 (1961).MATHADSCrossRefGoogle Scholar
  81. [81]
    B. K. Ridley and T. B. Watkins, The possibility of negative resistance effects in semiconductors. Proc. Phys. Soc. 78, 293 (1961).CrossRefADSGoogle Scholar
  82. [82]
    B. K. Ridley and T. B. Watkins, The dependence of capture rate on electric field and the possibility of negative resistance in semiconductors. Proc. Phys. Soc. 78, 710 (1961).CrossRefADSGoogle Scholar
  83. [83]
    B. V. Rollin and J. M. Rowell, Hot carriers in germanium. Proc. Phys. Soc. B 76, 1001 (1960).CrossRefADSGoogle Scholar
  84. [84]
    E. J. Ryder and W. Shockley, Mobilities of electrons in high electric fields. Phys. Rev. 81, 139 (1951).ADSCrossRefGoogle Scholar
  85. [85]
    E. J. Ryder, Mobility of holes and electrons in high electric fields. Phys. Rev. 90, 766 (1953).ADSCrossRefGoogle Scholar
  86. [86]
    W. Sasaki and M. Shibuya, Experimental evidence of the anisotropy of hot electrons in n-type germanium. J. Phys. Soc. Japan 11, 1202 (1956).ADSCrossRefGoogle Scholar
  87. [87]
    W. Sasaki, M. Shibuya, and K. Mizuguchi, Anisotropy of hot electrons in n-type germanium. J. Phys. Soc. Japan 13, 456 (1958).ADSCrossRefGoogle Scholar
  88. [88]
    W. Sasaki, M. Shibuya, K. Mizuguchi, and G. M. Hatoyama, Anisotropy of hot electrons in germanium. J. Phys. Chem. Solids 8, 250 (1959).CrossRefADSGoogle Scholar
  89. [89]
    H. Sato, The field dependence of the mobility of electrons in n-germanium. J. Phys. Soc. Japan 14, 1275 (1959).ADSCrossRefGoogle Scholar
  90. [90]
    K. H. Seeger, Microwave field dependence of drift mobility in germanium. Phys. Rev. 114, 476 (1959).ADSCrossRefGoogle Scholar
  91. [91]
    K. H. Seeger, Heiße Elektronen in Germanium. Abh. Deutsch. Akad. Wissensch. Berlin 1, 32 (1960).Google Scholar
  92. [92]
    K. H. Seeger, Ionenstreuung warmer Elektronen in nicht-entarteten unpolaren Halbleitern. Z. Physik 156, 582 (1959).CrossRefADSGoogle Scholar
  93. [93]
    K. J. Schmidt-Tiedemann, Leitfähigkeits-Anisotropie heißer Elektronen in n-Germanium. Phys. Verh. 9, 150 (1960).Google Scholar
  94. [94]
    K. J. Schmidt-Tiedemann und S. König, 1960. Unveröffentlicht.Google Scholar
  95. [95]
    K. J. Schmidt-Tiedemann und D. Restorff, 1960. Unveröffentlicht.Google Scholar
  96. [96]
    K. J. Schmidt-Tiedemann, Optische Doppelbrechung durch freie Träger in Halbleitern. Z. Naturf. 16a, 639 (1961).ADSGoogle Scholar
  97. [97]
    K. J. Schmidt-Tiedemann, Symmetry properties of warm electron effects in cubic semiconductors. Phys. Rev. 123, 1999 (1961).ADSCrossRefGoogle Scholar
  98. [98]
    K. J. Schmidt-Tiedemann, Experimental evidence of birefringence by free carriers in semiconductors. Phys. Rev. Letters 7, 372 (1961).ADSCrossRefGoogle Scholar
  99. [99]
    M. Shibuya, Hot electron problem in semiconductors with spheroidal energy surfaces. Phys. Rev. 99, 1189 (1955).MATHADSCrossRefGoogle Scholar
  100. [100]
    M. Shibuya and W. Sasaki, Intervalley scattering of hot electrons. J. Phys. Soc. Japan 15, 207 (1960).ADSCrossRefGoogle Scholar
  101. [101]
    W. Shockley, Hot electrons in germanium and Ohm’s law. B. S. T. J. 30, 990 (1951).Google Scholar
  102. [102]
    W. Shockley, Dislocations and edge states in the diamond crystal structure. Phys. Rev. 91, 228 (1953).CrossRefGoogle Scholar
  103. [103]
    W. Shockley, Theory of transmitted phonon drag. Structure and properties of thin films. Herausg. von C. A. Neugebauer, J. B. Newkirk und D.A. Vermilyea (John Wiley and Sons, Inc., New York 1959) pp. 306–326.Google Scholar
  104. [104]
    W. Shockley und K. Hübner, 1961. Private Mitteilung.Google Scholar
  105. [105]
    R. J. Sladek and F. S. Black, Variation of the electron mobility with electric field strength in InSb and the influence of a strong magnetic field. Bull. Amer. Phys. Soc. Ser. II 3, 378 (1958).Google Scholar
  106. [106]
    R. J. Sladek, Energy loss of warm electrons in n-InSb caused by piezoelectric scattering. Bull. Amer. Phys. Soc. Ser. II 5, 408 (1960).Google Scholar
  107. [107]
    R. J. Sladek, Quadratic deviations from Ohm’s law in n-type InSb. Phys. Rev. 120, 1589 (1960).ADSCrossRefGoogle Scholar
  108. [108]
    M. S. Sodha, Variation of mobility with electric field in nondegenerate semiconductors. Phys. Rev. 107, 1266 (1957).ADSCrossRefGoogle Scholar
  109. [109]
    M. S. Sodha and P. C. Eastmann, Variation of hall mobility of carriers in nondegenerate semiconductors with electric field. Phys. Rev. 110, 1314 (1958).ADSCrossRefGoogle Scholar
  110. [110]
    M. S. Sodha and D. B. Agarwal, Low field mobility of carriers in nondegenerate semiconductors. Canad. J. Phys. 36, 707 (1958).ADSGoogle Scholar
  111. [111]
    M. S. Sodha and Y. P. Varshni, Solution of Boltzmann’s equation in presence of high electric field, magnetic field, and temperature gradient for electrons in a simple model nondegenerate nonuniform semiconductor. Internat. Halbl. Konf. Prag 1960.Google Scholar
  112. [112]
    M. C. Steele and M. Glicksman, High electric field effects in n-InSb. J. Phys. Chem. Solids 8, 242 (1959).CrossRefADSGoogle Scholar
  113. [113]
    R. Stratton, The influence of inter-electronic collisions on conduction and breakdown in covalent semiconductors. Proc. Roy. Soc. London A 242, 355 (1957).MATHADSCrossRefGoogle Scholar
  114. [114]
    R. Stratton, The influence of inter-electronic collisions on conduction and breakdown in polar crystals. Proc. Roy. Soc. London A 246, 406 (1958).MATHADSCrossRefGoogle Scholar
  115. [115]
    R. Stratton On the hot electron effect in n-type germanium. J. Electronics 5, 157 (1958).CrossRefGoogle Scholar
  116. [116]
    G. Weinreich, T. M. Sanders, and H. G. White, Acoustoelectric effect in n-type germanium. Phys. Rev. 114, 33 (1959).ADSCrossRefGoogle Scholar
  117. [117]
    J. Yamashita and M. Watanabe, On the conductivity of non-polar crystals in the strong electric field. I. Progr. Theor. Phys. 12, 443 (1954).MATHADSCrossRefGoogle Scholar
  118. [118]
    J. Yamashita, Conductivity of non-polar crystals in strong electric field. II. Phys. Rev. 111, 1529 (1958).ADSCrossRefGoogle Scholar
  119. [119]
    J. Yamashita and K. Inoue, Hot electron in n-type germanium. Phys. Chem. Solids 12, 1 (1959).CrossRefADSGoogle Scholar
  120. [120]
    H. J. Zeiger, C. J. Rauch, and M. E. Behrndt, Observation of microwave cyclotron resonance by cross modulation. Phys. Rev. Letters 1, 59 (1958).ADSCrossRefGoogle Scholar
  121. [121]
    H. J. Zeiger, C. J. Rauch, and M. E. Behrndt, Cross modulation of dc resistance by microwave cyclotron resonance. J. Phys. Chem. Solids 8, 496 (1959).CrossRefADSGoogle Scholar
  122. [122]
    J. Zucker, Mobility in high resistivity germanium at high dc electric fields. Phys. Chem. Solids 12, 350 (1960).CrossRefADSGoogle Scholar
  123. [123]
    Proceedings International Conference on Semiconductor Physics Prague 1960 (Czechoslovak Academy of Sciences, Prague, 1961).Google Scholar
  124. [124]
    H. Risken and H. J. G. Meyer, Contribution of lattice scattering between none-quivalent valleys to free-carrier infrared absorption in semiconductors. Phys. Rev. 123, 416 (1961).ADSCrossRefGoogle Scholar
  125. [125]
    S. M. de Veer and H. J. G. Meyer, private Mitteilung.Google Scholar
  126. [126]
    A. F. Gibson and J. W. Granville, Infra-red and microwave modulators using germanium. Proceedings on the Role of Solid State Phenomena in Electric Circuits (Polytechn. Inst. of Brooklyn, 1957), p. 303.Google Scholar
  127. [127]
    M. Harmatz, Microwave absorption modulation by electron mobility variation in n-type germanium. Trans. IRE, MITT 9, 199 (1961).CrossRefGoogle Scholar
  128. [128]
    W. P. Dumke, Quantum theory of free carrier absorption. Phys. Rev. 124, 1813 (1961).ADSMathSciNetCrossRefGoogle Scholar
  129. [129]
    M. A. C. S. Brown and E. G. S. Paige, Electric-field-induced modulation of the absorption due to interband transitions of free holes in germanium. Phys. Rev. Letters 7, 84 (1961).ADSCrossRefGoogle Scholar
  130. [130]
    E. Erlbach and J. B. Gunn, Noise temperature of hot electrons in germanium. Phys. Rev. Letters (to be published).Google Scholar
  131. [131]
    M. A. C. S. Brown, Deviations from Ohm’s law in germanium and silicon. J. Phys. Chem. Solids 19, 218 (1961).ADSCrossRefGoogle Scholar
  132. [132]
    Y. Kanai, The change in electron mobility in indium antimonide at low electric field. J. Phys. Soc. Japan 15, 830 (1960).ADSCrossRefGoogle Scholar
  133. [133]
    J. Auth, Eine Spekulation über die Rolle “heißer” Elektronen beim “anomalen” PEM-Effekt. Z. phys. Chem., Lpz., 217, 188 (1961). *** DIRECT SUPPORT *** A00AX001 00005Google Scholar

Copyright information

© Friedr. Vieweg & Sohn 1962

Authors and Affiliations

  • K. J. S. Schmidt-Tiedemann
    • 1
  1. 1.Philips Zentrallaboratorium G.m.b.H.Laboratorium HamburgHamburgDeutschland

Personalised recommendations