Skip to main content

Carrier relaxation in semiconductors with multiple inequivalent valleys

  • Chapter
  • First Online:
Festkörperprobleme 32

Part of the book series: Advances in Solid State Physics ((ASSP,volume 32))

Abstract

The relaxation of an optically generated electron-hole plasma is reviewed for the case of multi-valley scenarios in semiconductors. A suitable model substance is bulk AlxGa1−xAs in the vicinity of the crossover from a direct to an indirect-gap material. The electrons distribute among the inequivalent valleys at the Γ, X and L points of the reciprocal space as a result of efficient intervalley coupling induced by deformation as well as alloy-disorder potentials. Exchange and correlation effects in the plasma lead to a differential narrowing of the direct and indirect gaps according to their individual population. These gap shifts are well described by a selfconsistent multi-valley model for the renormalization effects. A disorder-assisted nucleation of electron-hole droplets is found to occur on a picosecond timescale in indirect-gap AlxGa1−xAs. A comparison is drawn to the case of type-II superlattices with special emphasis on the condensation of quantum-confined electron-hole drops. Finally, the unusual process of stimulated emission related to the indirect gap in AlxGa1−xAs is highlighted. This indirect stimulated emission occurs in the visible spectral range at room temperature and is thus most interesting for laser applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, New York 1981)

    Google Scholar 

  2. see e.g. Proceedings of the International Conference on Hot Carriers in Semiconductors, Solid-State Electronics 32, No. 12 (1989).

    Google Scholar 

    Google Scholar 

  3. E.M. Conwell and M.O. Vassell, Phys. Rev. 166, 797 (1968).

    Article  ADS  Google Scholar 

  4. H.C. Casey and M.B. Panish, Heterostructure Lasers, Part A and B (Academic, New York 1978)

    Google Scholar 

  5. H. Kalt, W.W. Rühle, K. Reimann M. Rinker, and E. Bauser, Phys. Rev. B 43, 12364 (1991).

    Article  ADS  Google Scholar 

  6. H. Kalt and M. Rinker, Phys. Rev. B45, 1139 (1992).

    Article  ADS  Google Scholar 

  7. H. Kalt, K. Reimann, W.W. Rühle, M. Rinker, and E. Bauser, Phys. Rev. B 42, 7058 (1990).

    Article  ADS  Google Scholar 

  8. H. Kalt, K. Nötzel, K. Ploog, and H. Gießen, Phys. Rev. Lett., submitted.

    Google Scholar 

  9. M. Rinker, H. Kalt, and K. Höhler, Appl. Phys. Lett. 57, 584 (1990).

    Article  ADS  Google Scholar 

  10. M. Rinker, H. Kalt, Y.-C. Lu, E. Bauser, P. Gauser, and K. Köller, Appl. Phys. Lett. 59, 1102 (1991).

    Article  ADS  Google Scholar 

  11. J.L. Birman, M. Lax, and R. Loudon, Phys. Rev. 145, 620 (1966).

    Article  ADS  Google Scholar 

  12. S. Zollner, S. Gopalan, and M. Cardona, J. Appl. Phys. 68, 1682 (1990).

    Article  ADS  Google Scholar 

  13. J. Shah, Superl. and Microstr. 6, 293 (1989).

    Article  ADS  Google Scholar 

  14. A.R. Goñi, A. Cantarero, K. Syassen, and M. Cardona, Phys. Rev. B41, 10111 (1990).

    Article  ADS  Google Scholar 

  15. A.N. Pikhtin, Soviet Phys.-Semicond. 11, 245 (1977).

    Google Scholar 

  16. J. Feldmann, J. Nunnenkamp, G. Peter, E.O. Göbel, J. Kuhl, K. Ploog, P. Dawson, and C.T. Foxon, Phys. Rev. B42, 5809 (1990).

    Article  ADS  Google Scholar 

  17. K. Bohnert, H. Kalt, A.L. Smirl, D.P. Norwood, T.F. Boggess, and I.J. D'Haenens, Phys. Rev. Lett 60, 37 (1988).

    Article  ADS  Google Scholar 

  18. H. Haug and S. Schmitt-Rink, Prog. Quant. Electr. 9, 3 (1984); R. Zimmermann, Many-Particle Theory of Highly Excited Semiconductors (Teubner, Leipzig 1988).

    Article  ADS  Google Scholar 

  19. P. Vashishta and R.K. Kalia, Phys. Rev. B25, 6492 (1982).

    Article  ADS  Google Scholar 

  20. A. Forchel, H. Schweitzer, and G. Mahler, Phys. Rev. Lett. 51, 501 (1983).

    Article  ADS  Google Scholar 

  21. M. Capizzi, S. Modesti, A. Frova, J.L. Staehli, M. Guzzi, and R.A. Logan, Phys. Rev. B29, 2028 (1984).

    Article  ADS  Google Scholar 

  22. W.F. Brinkman and T.M. Rice, Phys. Rev. B7, 1508 (1973).

    Article  ADS  Google Scholar 

  23. M. Rinker, H. Kalt, K. Reimann, Y.-C Lu, and E. Bauser, Phys. Rev. B 42, 7274 (1990).

    Article  ADS  Google Scholar 

  24. H. Fieseler, R. Schwabe, and J.L. Staehli, Phys. Stat. Solidi (b) 159, 411 (1990).

    Article  ADS  Google Scholar 

  25. see e.g. C. Weber, C. Klingshirn, D.S. Chemla, D.A.B. Miller, J.E. Cunningham, and C. Ell, Phys. Rev. B38, 12748 (1988).

    Article  ADS  Google Scholar 

  26. J. Nunnenkamp, K. Reimann, J. Kuhl, and K. Ploog, Phys. Rev. B44, 8129 (1991).

    Article  ADS  Google Scholar 

  27. T.M. Rice, in Solid State Physics, Vol. 32, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York 1977), p. 1; J.C. Hensel, T.G. Phillips, and G.A. Thomas, ibidem Solid State Physics, Vol. 32, edited by H. Ehrenreich, F. Seitz, D. Turnbull (Academic, New York 1977), and p. 88; R.M. Westervelt, in Electron-Hole Droplets in Semicoductors edited by C.D. Jeffries and L.V. Keldysh (North Holland 1983), p. 187.

    Google Scholar 

  28. H. Haug and F.F. Abraham, Phys. Rev. B23, 2960 (1981).

    Article  ADS  Google Scholar 

  29. W.W. Rühle, K. Leo, and E. Bauser, Phys. Rev. B40, 1756 (1989).

    Article  ADS  Google Scholar 

  30. D.A. Kleinman, Phys. Rev. B33, 2540 (1986); P. Hawrylak, Phys. Rev. B39, 6264 (1989).

    Article  ADS  Google Scholar 

  31. R. Nötzel, N.N. Ledentsov, L. Däweritz, M. Hohenstein, and K. Ploog Phys. Rev. Lett. 66, 3812 (1991).

    Article  Google Scholar 

  32. R. Sarfaty, Arza Ron, E. Cohen, and R.A. Logan, J. Appl. Phys. 59, 780 (1986); H. Kalt, A.L. Smirl, and T.F. Boggess, J. Appl. Phys. 65, 294 (1989).

    Article  ADS  Google Scholar 

  33. M. Rinker, H. Kalt, Y.-C. Lu, E. Bauser, K. Köhler, and P. Ganser, Appl. Phys. A53, 198 (1991). *** DIRECT SUPPORT *** A00AX032 00006

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Kalt, H. (1992). Carrier relaxation in semiconductors with multiple inequivalent valleys. In: Festkörperprobleme 32. Advances in Solid State Physics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108626

Download citation

  • DOI: https://doi.org/10.1007/BFb0108626

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08040-2

  • Online ISBN: 978-3-540-75341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics