Skip to main content

Surface-dynamics of growing crystals

  • Chapter
  • First Online:
Book cover Festkörperprobleme 19

Part of the book series: Advances in Solid State Physics ((ASSP,volume 19))

Abstract

The dynamic processes at surfaces of crystals during growth are described using a variety of mathematical formalisms, depending on the characteristic lenght scales and times of the processes. For surfaces without dislocations a master-equation formalism allows one to calculate surface structures and growth rates to a very good quantitative precision. Surface spirals originating from screw dislocations are described by a time-dependent Ginzburg-Landau equation. The resulting anisotropic spiral structures are in agreement with Monte-Carlo simulations and allow us to explain recent experiments. At temperatures above a predicted roughening transition the growth rate is proportional to the difference of chemical potentials across the crystal surface. Crystals growing from a super-saturated liquid in this regime develop an instability of the interface, producing dendritic protrusions. The most popular example is the snowflake. A dynamic stability analysis of these dendrites is in excellent quantitative agreement with recent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A recent review is given by H. Müller-Krumbhaar in “Kinetics of Crystal Growth”, in Current Topics in Materials Science, E. Kaldis (ed.), Vol. 1, p. 1 (North Holland, Amsterdam 1978).

    Google Scholar 

  2. C. Domb and M. S. Green (eds.), “Phase Transitions and Critical Phenomena” (Academic Press, N. Y. 1972).

    Google Scholar 

  3. A. C. Zettlemoyer (ed.), Nucleation II, (Dekker, N. Y., 1976).

    Google Scholar 

  4. T. Riste (ed.), Physics of Nonequilibrium Systems, (Plenum Press, N. Y., 1975).

    Google Scholar 

  5. H. Müller-Krumbhaar and J. Haus, J. Chem. Phys. 69, 5219 (1978).

    Article  ADS  Google Scholar 

  6. B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962); J. Chem. Phys. 27, 1208 (1957).

    Article  ADS  Google Scholar 

  7. Note that the reverse problem of the solid-to-liquid transition seems to be in a better state, L. L. Boyer, Phys. Rev. Lett. 42, 584 (1979).

    Article  ADS  Google Scholar 

  8. W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. Roy. Soc. A 243, 299 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. H. Müller-Krumbhaar, in Current Topics in Materials Science, E. Kaldis and H. J. Scheel (eds.), Vol. 2, p. 115 (North Holland, Amsterdam 1977).

    Google Scholar 

  10. S. T. Chui and J. D. Weeks, Phys. Rev. B 14, 4978 (1976); Phys. Rev. Lett. 40, 733 (1978).

    Article  ADS  Google Scholar 

  11. Y. Saito, Z. Physik B 32, 75 (1978).

    Article  ADS  Google Scholar 

  12. H. v. Beijeren, Phys. Rev. Lett. 38, 993 (1977).

    Article  ADS  Google Scholar 

  13. M. Kerszberg and D. Mukamel, (preprint)

    Google Scholar 

  14. R. Swendsen, Phys. Rev. B 15 5421 (1977), Phys. Rev. Letters 37, 1478 (1976).

    Article  ADS  Google Scholar 

  15. G. Gilmer and P. Bennema, J. Crystal Growth 13/14, 148 (1972); J. Appl. Phys. 43 1347 (1972).

    Article  ADS  Google Scholar 

  16. J. Bourne and R. Davey, J. Crystal Growth 36, 278 (1976).

    Article  ADS  Google Scholar 

  17. H. Müller-Krumbhaar, Phys. Rev. B 10, 1308 (1974).

    Article  ADS  Google Scholar 

  18. Y. Saito and H. Müller-Krumbhaar, J. Chem. Phys. 70, 1078 (1979).

    Article  ADS  Google Scholar 

  19. D. E. Temkin, Sov. Phys. Crystallography 14, 344 (1969).

    Google Scholar 

  20. J. Weeks, G. Gilmer, and K. A. Jackson, J. Chem. Phys. 65, 712 (1976).

    Article  ADS  Google Scholar 

  21. H. Müller-Krumbhaar, in Monte Carlo Methods in Statistical Physics, K. Binder (ed.), p. 261, (Springer, Heidelberg, 1979).

    Google Scholar 

  22. S. W. de Haan, v. Meeussen, B. P. Veltman, P. Bennema, C. v. Leeuwen, and G. Gilmer, J. Cryst. Growth 24/25, 491 (1974).

    Article  Google Scholar 

  23. P. Bennema, J. Crystal Growth 5, 29 (1969)

    Article  ADS  Google Scholar 

  24. A roughening transition is not observed in a layerwise MFA, but the nucleation barrier decreases exponentially at high temperatures.

    Google Scholar 

  25. See ref. 21 and references cited.

    Google Scholar 

  26. R. Kaishew and E. Budewski, Contemp. Phys. 8, 489 (1967).

    Article  ADS  Google Scholar 

  27. H. Bethge and K. Keller, J. Crystal Growth 23, 105 (1974).

    Article  ADS  Google Scholar 

  28. B. Lampert and K. Reichelt, (Kernforschungsanlage Jülich, IFF) (preprint)

    Google Scholar 

  29. I. Sunagawa, K. Norita, P. Bennema, and B. van der Hoek, J. Crystal Growth 42, 121 (1977)

    Article  ADS  Google Scholar 

  30. H. Müller-Krumbhaar, T. Burkhardt, and D. Kroll, J. Crystal Growth 38, 13 (1977).

    Article  Google Scholar 

  31. A. F. Andreew, Sov. Phys. JETP, 18, 1415 (1963), O. E. Lanford and D. Ruelle, Commun. Math. Phys. 32, 75 (1973)

    Google Scholar 

  32. K. Binder and H. Müller-Krumbhaar, Phys. Rev. B 9, 2328 (1974).

    Article  ADS  Google Scholar 

  33. Our equation (7) then only holds if the effective diffusion length is small compared with the smallest length accuring in the solution of the equation.

    Google Scholar 

  34. R. Swendsen, P. Kortman, D. Landau, and H. Müller-Krumbhaar J. Crystal Growth 35, 73 (1976).

    Article  ADS  Google Scholar 

  35. H. Müller-Krumbhaar, J. Crystal Growth 44, 135 (1978).

    Article  ADS  Google Scholar 

  36. W. W. Mullins and R. S. Sekerka, J. Appl. Phys. 34, 323 (1963).

    Article  ADS  Google Scholar 

  37. G. P. Ivantsov, Dokl. Akad. Nauk, SSSR 58, 567 (1947).

    Google Scholar 

  38. J. S. Langer and H. Müller-Krumbhaar, Acta. Met. 26, 1681, 1689, 1697 (1978).

    Article  Google Scholar 

  39. M. E. Glicksman, R. J. Shaefer, and J. D. Ayers, Metall. Trans. (A) 7, 1747 (1976); M. Glicksman (preprint).

    Article  ADS  Google Scholar 

  40. J. S. Langer, R. F. Sekerka, and T. Fujioka, J. Crystal Growth 44, 414 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Treusch

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Müller-Krumbhaar, H. (1979). Surface-dynamics of growing crystals. In: Treusch, J. (eds) Festkörperprobleme 19. Advances in Solid State Physics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108323

Download citation

  • DOI: https://doi.org/10.1007/BFb0108323

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08025-9

  • Online ISBN: 978-3-540-75364-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics