Skip to main content

High efficiency crystalline silicon solar cells

  • Chapter
  • First Online:
Festkörperprobleme 30

Part of the book series: Advances in Solid State Physics ((ASSP,volume 30))

Abstract

The efficiency of crystalline silicon solar cells under non concentrated light has increased since 1983 from 17% to over 23%, a large gain for a relatively mature technology. Improvements have been made in several areas, notably in the trapping of weakly absorbed infra red radiation within the silicon, in surface passivation and in maintenance of high carrier lifetimes during processing. These and other improvements are discussed, and it is concluded that efficiencies of 25% are possible with current technology. However, improved methods of surface passivation are required for further progress towards the limit for conventional cells of around 29%. There has also been significant progress in efficiencies on lower cost polycrystalline silicon substrates to close to 18%. Cells with efficiencies above 20% seem possible by adapting the high efficiency techniques mentioned above to thin polycrystalline substrates. Crystalline silicon remains the most attractive semiconductor for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.W. Blakers, M.A. Green and Shi Jiqun, Proc. Solar World Conf., Perth (1983) ed. by S. Szokolay, p. 1378

    Google Scholar 

  2. M.A. Green, A.W. Blakers, Shi Jiqun E.M. Keller, and S.R. Wenham Appl. Phys. Lett., 44, 1163 (1984)

    Article  ADS  Google Scholar 

  3. A.W. Blakers and M.A. Green, Appl. Phys. Lett. 48, 215 (1986)

    Article  ADS  Google Scholar 

  4. R.A. Sinton, Y. Kwark, J.Y. Gan and R.M. Swanson, Elec. Dev. Lett. 7, 567 (1986)

    Article  ADS  Google Scholar 

  5. A.W. Blakers, A. Wang, A.M. Milne, J. Zhao and M.A. Green, Appl. Phys. Lett. 55, 1363 (1989)

    Article  ADS  Google Scholar 

  6. A.W. Blakers, J. Zhao, A. Wang, A.M. Milne, X. Dai and M.A. Green, Proc. 9th E.C. Photovoltaic Solar Energy Conf., Freiburg (1989), p. 328

    Google Scholar 

  7. P. Verlinden, F. Van de Wiele, G. Stehlin, F. Floret and J.P. David, Proc. 19th IEEE Photovoltaic Spec. Conf., New Orleans (1987), p. 405

    Google Scholar 

  8. R.A. Sinton, P. Verlinden, D.E. Kane and R.M. Swanson, Proc. 8th Photovoltaic Solar Energy Conf., Florence (1988), p. 1472

    Google Scholar 

  9. A.M. Barnett, D.H. Ford, R.B. Hall, C.L. Kendall and J.A. Rand, Proc. 9th Photovoltaic Solar Energy Conf., Freiburg, (1989), p. 697

    Google Scholar 

  10. Paul Basore, Iowa State University Research Foundation, Inc.

    Google Scholar 

  11. M.A. Green, IEEE Trans. Elec. Dev. ED31, 671 (1984)

    Article  ADS  Google Scholar 

  12. T. Tiedje, E. Yablonovitch, G.D. Cody and B.G. Brooks, Trans. Elec. Dev. ED-31, 711 (1984)

    Article  ADS  Google Scholar 

  13. H. Schlangenotto, H. Maeder and W. Gerlach phys. stat. sol. (a) 21, 357 (1974)

    Article  ADS  Google Scholar 

  14. J. Dziewior and W. Schmid, Appl Phys. Lett. 31, 346 (1977)

    Article  ADS  Google Scholar 

  15. K.G. Svantesson and N.G. Nielsson, J. Phys. C 12, 5111 (1979)

    Article  ADS  Google Scholar 

  16. R.A. Sinton and R.M. Swanson, IEEE Trans. Elec. Dev. ED-34, 1380 (1987)

    Article  Google Scholar 

  17. E. Yablonovitch and T. Gmitter, Appl. Phys. Lett. 49, 587 (1986)

    Article  ADS  Google Scholar 

  18. A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, X. Dai and M.A. Green, Proc. 4th Int. PV Science and Engineerings Conf., Sydney (1989)

    Google Scholar 

  19. R.R. King, R.A. Sinton and R.M. Swanson, Appl. Phys. Lett. 54, 1460 (1989)

    Article  ADS  Google Scholar 

  20. E. Yablonovitch, T. Gmitter, R.M. Swanson and Y.H. Kwark, Appl. Phys. Lett. 47, 1211 (1985)

    Article  ADS  Google Scholar 

  21. W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

  22. M.A. Green, Solar Cells 8, 3 (1983)

    Article  ADS  Google Scholar 

  23. M.A. Green, High Efficiency Silicon Solar Cells, (Trans Tech Publications, Switzerland 1987)

    Google Scholar 

  24. R.A. Sinton and R.M. Swanson, Elec. Rev. Lett. 8, 547 (1987)

    Article  ADS  Google Scholar 

  25. P. Campbell, S.R. Wenham and M.A. Green, Proc. 20th IEEE Photovoltaic Spec. Conf. Las Vegas (1988), p. 713

    Google Scholar 

  26. E. Yablonovitch and G.D. Cody, Trans. Elec. Dev. ED-29, 300 (1982)

    Article  ADS  Google Scholar 

  27. P. Campbell and M.A. Green, J. Appl. Phys. 62, 243 (1987)

    Article  ADS  Google Scholar 

  28. P. Campbell and M.A. Green, Trans. Elec. Dev. Ed-33, 234 (1986)

    Article  ADS  Google Scholar 

  29. Made by Entec Corporation

    Google Scholar 

  30. M.A. Green, A.W. Blakers and S.R. Wenham, Proc. 9th Photovoltaic Solar Energy Conf., Freiburg (1989) p.301

    Google Scholar 

  31. D.E. Kane and R.M. Swanson, Proc. 18th IEEE Photovoltaic Spec. Conf., Las Vegas (1985) p. 578

    Google Scholar 

  32. H. Shiraki, Jap. J. Appl. Phys. 15, 1 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  33. M.A. Green, private communication

    Google Scholar 

  34. R.M. Swanson, S.K. Beckwith, R.A. Crane, W.D. Eades, Y.H. Kwark, R.A. Sinton and S.E. Swirhun, IEEE Trans. Elec. Dev. ED-31, 661 (1984)

    Article  ADS  Google Scholar 

  35. W.D. Eades and R.M. Swanson, J. Appl. Phys. 58, 4267 (1985)

    Article  ADS  Google Scholar 

  36. P.E. Gruenbaum, R.R. King and R.M. Swanson, J. Appl. Phys. 66, 6110 (1989)

    Article  ADS  Google Scholar 

  37. R.A. Sinton, D.E. Kane, R.A. Crane and R.M. Swanson, Proc. 9th Photovoltaic Solar Energy Conf., p. 324, Freiburg (1989)

    Google Scholar 

  38. P. Verlinden, R.M. Swanson, R.A. Sinton and D.E. Kane, Proc. 9th. Photovoltaic Solar Energy Conf., Florence (1988)

    Google Scholar 

  39. A. Cuevas, R.A. Sinton, N.E. Midkiff and R.M. Swanson, Proc. 9th Photovoltaic Solar Energy Conf., Freiburg (1989) p. 761

    Google Scholar 

  40. B. Authier, in Festkörperprobleme 18, ed. by J. Treusch (Vieweg, 1978)

    Google Scholar 

  41. H. Fischer in Festkörperprobleme 18, ed. by J. Treusch (Vieweg, 1978)

    Google Scholar 

  42. S. Martinuzzi and A. Räuber, Proc. 9th Photovoltaic Solar Energy Conf., Freiburg (1989) p. 3

    Google Scholar 

  43. S. Narayanan, S.R. Wenham and M.A. Green, IEEE Trans. Elec. Dev. ED 37, 382 (1990)

    Article  ADS  Google Scholar 

  44. M.A. Green, Solar Cells 18, 31 (1986)

    Article  ADS  Google Scholar 

  45. F.A. Lindholm, A. Neuroschel and K. Misiokos in: Current Topics in Photovoltaics 2, ed. by T. Coutts and J. Meakin (Academic, 1987) p. 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Rössler

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Blakers, A. (1990). High efficiency crystalline silicon solar cells. In: Rössler, U. (eds) Festkörperprobleme 30. Advances in Solid State Physics, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108299

Download citation

  • DOI: https://doi.org/10.1007/BFb0108299

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08038-9

  • Online ISBN: 978-3-540-75346-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics