Skip to main content

The efficiency of resonant light scattering on excitons

  • Excitons and Polaritons, High Excitation
  • Chapter
  • First Online:

Part of the book series: Advances in Solid State Physics ((ASSP,volume 25))

Abstract

We discuss the validity of various theories of resonant light scattering by phonons. We specially consider the case of an exciton-phonon coupling which is small compared to the exciton-photon coupling. Thus, for a particular choice of additional boundary conditions (ABC) the scattered intensity can be calculated self-consistently with, parameters deduced from the experiments. We discuss several experiments, of the literature and the problem of ABC. Elastic scatterings by defects are also considered.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Cardona, in: Light Scattering in Solids II, edited by M. Cardona, and C. Güntherodt (Springer 1982).

    Google Scholar 

  2. C. Weissbuch and R. G. Ulbrich, in: “Light Scattering in Solids III”, edited by M. Cardona and G. Güntherodt (Springer 1982).

    Google Scholar 

  3. M. Yamane and K. Cho, Physica 117+118 B, 377 (1983).

    Google Scholar 

  4. J. C. Merle, R. Sooryakumar and M. Cardona, Phys. Rev. B 30, 3261 (1984).

    Article  ADS  Google Scholar 

  5. P. Yu and F. Evangelisti, Solid State Comm. 27, 87 (1978).

    Article  ADS  Google Scholar 

  6. P. Yu, Solid State Comm. 19, 1987 (1976).

    Article  Google Scholar 

  7. Y. Oka and M. Cardona, Solid State Comm. 30, 447 (1979).

    Article  ADS  Google Scholar 

  8. P. Yu and F. Evangelisti, Phys. Rev. Letters 42, 1642 (1979).

    Article  ADS  Google Scholar 

  9. J. Wicksted, M. Matsushita, H. Z. Cummins, T. Shigenari and X. Z. Lu, Phys. Rev. B 29, 3350 (1984).

    Article  ADS  Google Scholar 

  10. W. Brenig, R. Zeyher and J. L. Birman, Phys. Rev. B 6, 4617 (1972).

    Article  ADS  Google Scholar 

  11. H. Kurita, O. Sakai and A. Kotani, Solid State Comm. 40, 127 (1981).

    Article  ADS  Google Scholar 

  12. J. C. Merle, F. Meseguer and M. Cardona presented at the 17th ICPS, San Francisco (U.S.A.), 6–10 August 1984 and to be published.

    Google Scholar 

  13. S. I. Pekar, Sov. Phys. JETP 6, 785 (1958); 34, 813 (1958).

    MathSciNet  ADS  Google Scholar 

  14. J. J. Hopfield, Phys. Rev. 112, 1555 (1958).

    Article  MATH  ADS  Google Scholar 

  15. W. Hayes and R. London, Scattering of Light by Crystals, (Wiley., New York 1978).

    Google Scholar 

  16. B. Bendow, in: Springer tracts in Modern Physics 82, Springer Verlag (1978).

    Google Scholar 

  17. L. N. Ovander, Sov. Phys. Sol. State, 3, 1737 (1962).

    MathSciNet  Google Scholar 

  18. D. L. Mills and E. Burstein, Phys. Rev. 188, 1465 (1969).

    Article  ADS  Google Scholar 

  19. R. Loudon, J. Phys. B 3, 233 (1970).

    Google Scholar 

  20. M. Matsushita, J. Wicksted and H. Z. Cummins, Phys. Rev. B 29, 3362 (1984).

    Article  ADS  Google Scholar 

  21. V. M. Agranovich and V. L. Ginzburg, Spatial dispersion in crystal optics and the theory of excitons (John Wiley, London 1966).

    Google Scholar 

  22. K. Cho and M. Yamane, Solid State Comm. 40, 121 (1980).

    Article  Google Scholar 

  23. A. I. Anselm and A. Firsov, Sov. Phys. JETP 1, 139 (1955).

    Google Scholar 

  24. Y. Toyozawa, Progr. Theor. Phys. 20, 53 (1958).

    Article  MATH  ADS  Google Scholar 

  25. The constants entering in the calculation are given in [12]. R. C. Merle, F. Meseguer and M. Cardona presented at the 17th ICPS, San Francisco (U.S.A.), 6–10 August 1984 and to be published. Details will be given elsewhere. The exact definition of the functions Qe(q) and Qh (q) given in [1 … 4] are used in all the calculations of the present paper.

    Google Scholar 

  26. A two-oscillator model is however necessary to explain the behaviour of the TO phonon.

    Google Scholar 

  27. In the calculations of Figs. 5 and 6, we use a two-oscillator model, including the A and B excitons. For A, hωT=2.55 eV and hωL−hωT=1.9 meV. For B, hωT=2.565 eV and hωL−hωT=1.4 meV. For both, the electron and hole masses are: me=0.2 m0, mh=0.63 m0 and the exciton radius is 28 Å, ∈b=8.5. The exchange parameter j and deformation potentials of [28] are used. The interband effects discussed in [28] are included. However, the quantity C2+C4=−1.6 eV of [28] is, in fact, a difference Cc−Cv between a conduction and a valence band deformation potential. A rough estimation, based on a comparison with zinc-blende materials and on the results of [28] leads us to tentatively assume Cc=−7 eV and Cv=−5.4 eV. The other constants are the same as in [9 , 20].

    Article  ADS  Google Scholar 

  28. D. W. Langer, R. N. Euwema, K. Era and T. Koda, Phys. Rev. B 2, 4005 (1970).

    Article  ADS  Google Scholar 

  29. C. Hermann and P. Y. Yu, Phys. Rev. B 21, 3675 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Merle, JC. (1985). The efficiency of resonant light scattering on excitons. In: Grosse, P. (eds) Festkörperprobleme 25. Advances in Solid State Physics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108160

Download citation

  • DOI: https://doi.org/10.1007/BFb0108160

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08031-0

  • Online ISBN: 978-3-540-75361-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics