Skip to main content

The spectroscopic evidence for the identity of EL2 and the AsGa antisite in As-grown GaAs

  • Chapter
  • First Online:
Festkörperprobleme 29

Part of the book series: Advances in Solid State Physics ((ASSP,volume 29))

Abstract

EL2, the dominant deep defect in undoped as-grown GaAs has attracted tremendous interest because of its peculiar optical properties and because of its technological importance for the growth of undoped semi-insulating GaAs. This paper first outlines the photoelectronic and optical properties of EL2. The second part describes the optical properties of the AsGa antisite defect as inferred from magnetic resonance combined with optical techniques. A comparison of the data demonstrates that EL2 and the AsGa antisite as defined by its electron-spin-resonance (ESR) behavior in undoped as-grown GaAs have the same optical properties. At present this fact is the most direct and convincing evidence that EL2 is the AsGa antisite seen by ESR and related techniques. Whether this antisite is an isolated defect or a complex with an arsenic interstitial is a highly controversial question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.M. Martin and S. Makram-Ebeid in: “Deep Centers in Semiconductors” Ed. S.T. Pantelides (Gordon and Breach, 1986) pp. 389

    Google Scholar 

  2. A.M. Huber, N.T. Linh, M. Valladon, J.C. Debrun, G.M. Martin, A. Mitonneau and A. Mircea, J. Appl. Phys. 50, 4022 (1979)

    Article  ADS  Google Scholar 

  3. D. Bois and G. Vincent, J. Physique 38, L351 (1977)

    Article  Google Scholar 

  4. G. Vincent and D. Bois, Solid State Commun. 27, 431 (1978)

    Article  ADS  Google Scholar 

  5. G.M. Martin, J.P. Farges, G. Jacob, J.P. Hallais and G. Poiblaud, J. Appl. Phys. 51, 2840 (1980)

    Article  ADS  Google Scholar 

  6. H. Lessoff private communication 1980

    Google Scholar 

  7. With one exception AsGa/EL2 data obtained for plastically deformed or particle irradiated material are not considered here.

    Google Scholar 

  8. When speaking of the AsGa antisite the author refers to the defect that gives rise to the AsGa+ electron-spin-resonance spectrum in as-grown undoped GaAs. It is left as an open question whether this is isolated AsGa or AsGa complexed with an As interstitial.

    Google Scholar 

  9. D. Bois and A. Chantre, Revue Phys. Appliquée 15, 631 (1980)

    Article  Google Scholar 

  10. A. Chantre, G. Vincent and D. Bois, Phys. Rev. B23, 5335 (1981)

    Article  ADS  Google Scholar 

  11. P. Silverberg, P. Omling and L. Samuelson, Appl. Phys. Lett. 52, 1689 (1988)

    Article  ADS  Google Scholar 

  12. G.L. Miller, D.V. Lang and L.C. Kimerling, Ann. Review Mater. Sci. 1977 pp. 377

    Google Scholar 

  13. Other conclusions are possible but lead to contradictions.

    Google Scholar 

  14. G. Vincent, D. Bois and A. Chantre, J. Appl. Phys. 53, 3643 (1982)

    Article  ADS  Google Scholar 

  15. A partial or even complete optical recovery has been reported in Refs. 16–20. However it is not clear whether this is a direct optical effect or an indirect one induced by optically generated free carriers, see, Ref. 21. A. Mitonneau and A. Mircea, Solid State Commun. 30 157 (1979). The effect described in this paper, also referred to as Auger deexcitation, is not well understood. One could speculate that neutral EL2* captures an electron and that the thermal barrier for the decay of negative EL2* is much smaller than that of neutral EL2*. Thus instable EL2 could form which by emitting an electron could form EL20. This hypothetical sequence would be an Auger-type process.

    Article  ADS  Google Scholar 

  16. M. Tajima, Japanese J. Appl. Phys. 24, L47 (1985)

    Article  ADS  Google Scholar 

  17. H.J.v. Bardeleben, N.T. Bagraev and J.C. Bourgoin, Appl. Phys. Lett. 51, 1451 (1987)

    Article  ADS  Google Scholar 

  18. D.W. Fischer, Appl. Phys. Lett. 50, 1751 (1987)

    Article  ADS  Google Scholar 

  19. M. Tajima, H. Saito, T. Iino and K. Ishida, Japanese J. Appl. Phys. 27, L101 (1988)

    Article  ADS  Google Scholar 

  20. J.C. Parker and R. Bray, Phys. Rev. B 37, 6368 (1988)

    Article  ADS  Google Scholar 

  21. A. Mitonneau and A. Mircea, Solid State Commun. 30, 157 (1979). The effect described in this paper, also referred to as Auger deexcitation, is not well understood. One could speculate that neutrla EL2* captures an electron and that the thermal barrier for the decay of negative EL2* is much smaller than that of neutral EL2*. Thus instable EL2 could form which by emitting an electron could form EL20. This hypothetical sequence would be an Auger-type process.

    Article  ADS  Google Scholar 

  22. F. Fuchs and B. Dischler, Appl. Phys. Lett. 51, 679 (1987)

    Article  ADS  Google Scholar 

  23. P. Trautmann, M. Kaminska and J.M. Baranowski, Acta Phys. Pol. A71, 269 (1987)

    Google Scholar 

  24. M. Skowronskio, J. Lagowski and H.C. Gatos, Phys. Rev. B 32, 4264 (1985)

    Article  ADS  Google Scholar 

  25. Y. Mochizuko and T. Ikoma in “Semi-Insulating III–V Materials” Eds. H. Kukimoto, S. Miyazawa (Ohmsha, 1986) pp. 323.

    Google Scholar 

  26. M. Levinson and J.A. Kafalas, Phys. Rev. B 35, (1987)

    Google Scholar 

  27. J. Lagowski, D.G. Lin, T.P. Chen, M. Skowronski and H.C. Gatos, Appl. Phys. Lett. 47, 929 (1985)

    Article  ADS  Google Scholar 

  28. J. Osaka, H. Okamoto and K. Kobayashi, “Semi-Insulating III–V Materials” Eds. H. Kukimoto, S. Miyazawa (Ohmsha, 1986) pp. 421

    Google Scholar 

  29. A. Bencherifa, G. Brémond, A. Nouaihat, G. Guillot, A. Guivarch and A. Regreny, Revue Phys. Appliquée 22, 891 (1987)

    Article  Google Scholar 

  30. T. Wosinski, Appl. Phys. A 36, 213 (1985)

    Google Scholar 

  31. P. Omling, P. Silverberg and L. Samuelson, Phys. Rev. B 38, 3606 (1988)

    Article  ADS  Google Scholar 

  32. P. Silverberg, P. Omling and L. Samuelson in “Semi-Insulating III–V Materials” Eds. G. Grossmann, L. Ledebo (Adam Hilger, 1988) pp. 369

    Google Scholar 

  33. M.D. Sturge, Phys. Rev. 127, 768 (1962)

    Article  ADS  Google Scholar 

  34. G.M. Martin, Appl. Phys. Lett. 39, 747 (1981)

    Article  ADS  Google Scholar 

  35. B. Dischler, F. Fuchs and U. Kaufmann, Appl. Phys. Lett. 48, 1282 (1986)

    Article  ADS  Google Scholar 

  36. F. Fuchs, B. Dischler and U. Kaufmann in “Semi-Insulating III–V Materials” Eds. H. Kukimoto, S. Miyazawa (Ohmsha, 1986) pp. 329

    Google Scholar 

  37. “Defect Recognition and Image Processing in III–V Compounds” Ed. J.P. Fillard (Elsevier, 1985)

    Google Scholar 

  38. “Defect Recognition and Image Processing in III–V Compounds” Ed. E.R. Weber (Elsevier, 1987)

    Google Scholar 

  39. M. Kaminska, M. Skowronski, J. Lagowski, J.M. Parsey and H.C. Gatos, Appl. Phys. Lett. 43, 302 (1983)

    Article  ADS  Google Scholar 

  40. F. Fuchs and B. Dischler, Appl. Phys. Lett. 51, 2115 (1987)

    Article  ADS  Google Scholar 

  41. N. Tsukada, T. Kikuta and K. Ishida, Japanese J. Appl. Phys. 24, L302 (1985)

    Article  ADS  Google Scholar 

  42. N. Tsukada, T. Kikuta and K. Ishida, Japanese J. Appl. Phys. 25, L196 (1986)

    Article  ADS  Google Scholar 

  43. Here it is assumed that after autoionization of EL20, the electron recombines with EL2+ within a time shorter than a nanosecond, see Ref. 44. W.W. Rühle, K. Leo and N.M. Haegel, “GaAs and Related Compounds 1987” Eds. A. Christou and H.S. Rupprecht, Inst. Phys. Conf. Ser. 91, 105 (1988). Thus EL20 is immediately available for the next absorption cycle.

    Google Scholar 

  44. W.W. Rühle, K. Leo and N.M. Haegel, “GaAs and Related Compounds 1987” Eds. A. Christou and H.S. Rupprecht, Inst. Phys. Conf. Ser. 91, 105 (1988)

    Google Scholar 

  45. W. Kuszko and M. Kaminska, Acta Phys. Pol. A69, 427 (1986)

    Google Scholar 

  46. F. Fuchs and B. Dischler, private communication

    Google Scholar 

  47. M. Skowronski, D.G. Lin, J. Lagowski, M.L. Pawlowicz, K.Y. Ko and H.C. Gatos, Mat. Res. Soc. Proc. 46, 207 (1985)

    Google Scholar 

  48. M.O. Manasreh and B.C. Covington, Phys. Rev. B 35, 2524 (1987)

    Article  ADS  Google Scholar 

  49. M.O. Manasreh and B.C. Covington, Phys. Rev. B 36, 2730 (1987)

    Article  ADS  Google Scholar 

  50. K. Bergman, P. Omling, L. Samuelson and H.G. Grimmeiss in “Semi-Insulating III–V Materials” Eds. G. Grossmann, L. Ledebo (Adam Hilger, 1988) p. 397

    Google Scholar 

  51. W. Kuszko, M. Jezewski, J.M. Baranowski and M. Kaminska, Appl. Phys. Lett. 53 2558 (1988)

    Article  ADS  Google Scholar 

  52. M. Kaminska, M. Skowronski and W. Kuszko, Phys. Rev. Lett. 55, 2204 (1985)

    Article  ADS  Google Scholar 

  53. T. Figielski and T. Wosinski, Phys. Rev. B 36, 1269 (1987)

    Article  ADS  Google Scholar 

  54. H. Ennen, U. Kaufmann and J. Schneider, Appl. Phys. Lett. 38, 355 (1981)

    Article  ADS  Google Scholar 

  55. W. Kuszko, P.J. Walczak, P. Trautman, M. Kaminska and J.M. Baranowski, “Defects in Semiconductors” Ed. H.J.v. Bardeleben (trans Tech, 1986) Materials Science Forum Vols. 10–12. pp. 317

    Google Scholar 

  56. J. Dabrowski and M. Scheffler, Phys. Rev. Lett. 60, 2183 (1988)

    Article  ADS  Google Scholar 

  57. D.J. Chadi and K.J. Chang, Phys. Rev. Lett. 60, 2187 (1988)

    Article  ADS  Google Scholar 

  58. Landolt-Börnstein, New Series, Ed. M. Schulz (Springer, 1989) Vol. 22b

    Google Scholar 

  59. M. Tajima in “Semi-Insulating III–V Materials” Eds. G. Grossmann, L. Ledebo (Adam Hilger, 1988) pp. 119

    Google Scholar 

  60. M. Tajima, Japanese J. Appl. Phys. 26, L885 (1987)

    Article  ADS  Google Scholar 

  61. M. Tajima, T. Iino and K. Ishida, Japanese J. Appl. Phys. 26, L1060 (1987)

    Article  ADS  Google Scholar 

  62. J.A. van Vechten, J. Electrochem. Soc. 122, 423 (1975)

    Article  Google Scholar 

  63. K. Chino, T. Kazuno, K. Satoh and M. Kubota in “Semi-Insulating III–V Materials” Eds. G. Grossmann, L. Ledebo (Adam Hilger, 1988) pp. 133

    Google Scholar 

  64. T.A. Kennedy, N.D. Wilsey, P.B. Klein and R.L. Henry, Materials Science Forum Vols. 10–12, 271 (1986)

    Article  Google Scholar 

  65. R.J. Wagner, J.J. Krebs, G.M. Stauss and A.M. White, Solid State Commun. 36, 15 (1980)

    Article  ADS  Google Scholar 

  66. J.R. Morton and K.F. Preston, J. Magn. Reson. 30, 577 (1978)

    Google Scholar 

  67. U. Kaufmann and J. Schneider in: “Festkörperprobleme XX, adv. in Solid State Physics”, Ed. J. Treusch (Vieweg, 1980) pp. 87

    Google Scholar 

  68. U. Kaufmann, J. Schneider and A. Räuber, Appl. Phys. Lett. 29, 312 (1976)

    Article  ADS  Google Scholar 

  69. L.H. Robins, P.C. Taylor and T.A. Kennedy, Phys. Rev. B 38, 13227 (1988)

    Article  Google Scholar 

  70. M. Baeumler, J. Schneider, U. Kaufmann, W.C. Mitchel and P.W. Yu, Phys. Rev. B March 15 (1989)

    Google Scholar 

  71. B.K. Meyer, D.M. Hofmann, F. Lohse and J.M. Spaeth in: “Defects in Semiconductors” Eds. L.C. Kimerling, J.M. Parsey, J. Electronic Mat. 14b, 921 (1985)

    Google Scholar 

  72. D.Y. Jeon, H.P. Gislason, J.F. Donegan and G.D. Watkins, Phys. Rev. B 36, 1324 (1987)

    Article  ADS  Google Scholar 

  73. B.K. Meyer, D.M. Hofmann, J.R. Niklas and J.M. Spaeth, Phys. Rev. B 36, 1332 (1987)

    Article  ADS  Google Scholar 

  74. B.K. Meyer et al, this volume

    Google Scholar 

  75. H.J.v. Bardeleben, D. Stievenard, D. Deresmes, A. Huber and J.C. Bourgoin, Phys. Rev. B 34, 7192 (1986)

    Article  Google Scholar 

  76. G.A. Baraff, M. Lannoo and M. Schlüter, Phys. Rev. B 38, 6083 (1988)

    Google Scholar 

  77. E.R. Weber and M. Kaminska in: “Semi-Insulating III–V Materials” Eds. G. Grossmann, L. Ledebo (Adam Hilger, 1988) pp. 111

    Google Scholar 

  78. E.R. Weber “Semi-Insulating III–V Materials” Eds. D.C. Look and J.S. Blakemoore (Shiva Ltd. 1984), pp. 296

    Google Scholar 

  79. U. Kaufmann, J. Windscheif, M. Baeumler, J. Schneider and F. Köhl, see Ref. 78, “Semi-Insulating III–V Materials” Eds. D.C. Look and J.S. Blakemoore (Shiva Ltd. 1984), pp. 246

    Google Scholar 

  80. J.C. Bourgoin, H.J.v. Bardeleben, D. Stievenard, J. Appl. Phys. 64, R65 (1988)

    Article  ADS  Google Scholar 

  81. M. Baeumler, U. Kaufmann and J. Windscheif, Appl. Phys. Lett. 46, 781 (1985)

    Article  ADS  Google Scholar 

  82. U. Kaufmann, “GaAs and related Compounds 1987” Eds. A. Christou, H.S. Rupprecht, Inst. Phys. Conf. Ser. 91, 41 (1988)

    Google Scholar 

  83. M. Baeumler, P.M. Mooney and U. Kaufmann, Materials Science Forum Vols 38–41, 785 (1989)

    Article  Google Scholar 

  84. This fact casts doubt on the simple three level compensation model for SI GaAs involving only shallow donors and acceptors and the AsGa/EL2 mid-gap level

    Google Scholar 

  85. E.R. Weber, H. Ennen, U. Kaufmann, J. Windscheif, J. Schneider and T. Wosinski, J. Appl. Phys. 53, 6140 (1982)

    Article  ADS  Google Scholar 

  86. E.R. Weber and J. Schneider, Physica 116B, 398 (1983)

    Google Scholar 

  87. Recovery of EL20 occurs around 130 K but complete recovery of As +Ga is not achieved below 250 K. Since different charge states are monitored this does not necessarily mean that different defects are involved.

    Google Scholar 

  88. M. Baeumler, U. Kaufmann and J. Windscheif, Mat. Res. Soc. Proc. Vol. 46, 201 (1985)

    Google Scholar 

  89. N. Tsukada, T. Kikuta and K. Ishida, Phys. Rev. B 33, 8859 (1986)

    Article  ADS  Google Scholar 

  90. J. Schneider, B. Dischler, H. Seelewind, P. Mooney, J. Lagowski, M. Matsui, D.R. Beard and R. Newman, Appl. Phys. Lett. April (1989)

    Google Scholar 

  91. H.Ch. Alt, Appl. Phys. Lett. April (1989)

    Google Scholar 

  92. Contrary to what one expects for a mid-gap donor, no As +Ga enhancement is visible below 1.0 eV in Fig. 8a. The reason is that for the sample in question the AsGa (o/+) level is partially compensated and therefore As +Ga quenching competes with As +Ga enhancement. If only As oGa is present in thermal equilibrium one also observes an As +Ga enhancement between 0.75 eV and 1.0 eV, see Ref. 93 Japanese J. Appl. Phys. 24, L689 (1985)

    Google Scholar 

  93. N. Tsukada, T. Kikuta and K. Ishida, Japanese J. Appl. Phys. 24, L689 (1985)

    Article  ADS  Google Scholar 

  94. J. Lagowski, M. Matsui, M. Bugajski, C.H. Kang, M. Skowronski, H.C. Gatos, M. Hoinkis, E.R. Weber and W. Walukiewicz, “GaAs and Related Compounds 1987” Eds. A. Christou, H.S. Rupprecht, Inst. Phys. Conf. Ser. 91, 395 (1988)

    Google Scholar 

  95. B.K. Meyer, D.M. Hofmann and J.M. Spaeth, J. Phys. C 20, 2445 (1987)

    Article  ADS  Google Scholar 

  96. B.K. Meyer, J.M. Spaeth and M. Scheffler, Phys. Rev. Lett. 52, 851 (1984)

    Article  ADS  Google Scholar 

  97. A. Winnacker, Th. Vetter and F.X. Zach “Semi-Insulating III–V Materials” Eds. G. Grossmann, L. Ledebo (Adam Hilger, 1988) pp. 583

    Google Scholar 

  98. U. Kaufmann, Phys. Rev. Lett. 54, 1332 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  99. U. Kaufmann and J. Windscheif, Phys. Rev. B 38, 10060 (1988)

    Article  Google Scholar 

  100. U. Kaufmann and J. Windscheif, “Semi-Insulating III–V Materials” Eds. G. Grossmann, L. Ledebo (Adam Hilger, 1988) pp. 343

    Google Scholar 

  101. J.S. Blakemore, J. Appl. Phys. 53, R123 (1982)

    Article  ADS  Google Scholar 

  102. M. Baeumler, B.K. Meyer, U. Kaufmann and J. Schneider, “Defects in Semiconductors” Ed. G. Ferenczi (Trans Tech, 1989) Materials Science Forum Vols. 38–41, pp. 797

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Rössler

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Kaufmann, U. (1989). The spectroscopic evidence for the identity of EL2 and the AsGa antisite in As-grown GaAs. In: Rössler, U. (eds) Festkörperprobleme 29. Advances in Solid State Physics, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108012

Download citation

  • DOI: https://doi.org/10.1007/BFb0108012

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08035-8

  • Online ISBN: 978-3-540-75350-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics