Skip to main content

Nonlinear optical phase conjugation

  • Chapter
  • First Online:

Part of the book series: Advances in Solid State Physics ((ASSP,volume 22))

Abstract

This article summarizes the nonlinear optical methods allowing one to perform optical phase conjugation, i. e. spatial-phase reversal of an incoming electromagnetic wave. Special attention is given to the most powerful technique—to date—which is based on degenerate four-wave mixing (DFWM). One discusses the physical processes (one-photon and two-photon resonances) responsible for DFWM. The generation of light-induced Bragg gratings, and the analogy with real-time holography are emphasized, with a brief review of the applications in adaptive optics and imaging (wavefront rectification, etc.). Also described are the spectroscopic applications of DFWM (transient gratings, Doppler-free emission in gases, high-frequency heterodyne spectroscopy), the polarization properties of phase-conjugate mirrors, and the operation of phase-conjugate resonators.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. I. Stepanov, E. V. Ivakin and A. S. Rubanov; Sov. Phys. Dokl. 16, 46 (1971).

    ADS  Google Scholar 

  2. J. P. Woerdman, Opt. Comm. 2, 212 (1970).

    Article  ADS  Google Scholar 

  3. B. Ya. Zel'Dovich, V. I. Popovichev, V. V. Ragul'skii and F. S. Faizullov, JETP Letters, 15, 109 (1972); 16, 435 (1972).

    ADS  Google Scholar 

  4. R. W. Hellwarth, J. Opt. Soc. Amer. 67, 1 (1977).

    Article  ADS  Google Scholar 

  5. For reviews on various aspects of phase-conjugation, see: A. Yariv, I. E. E. E. Quant. Electron. QE 14, 650 (1978); B. Ya. Zel'Dovich, N.F. Pilipetskii and V.V. Skunov, Sov. J. Quant. Electron. 8, 1021 (1978); C. R. Giuliano, Physics Today (April 1981); D. M. Pepper, Laser Focus (January 1982).

    Article  ADS  Google Scholar 

  6. H. H. Barett and S. F. Jacobs, Opt. Letters 4, 190 (1979).

    Article  ADS  Google Scholar 

  7. V. Wang and C. R. Giuliano, Opt. Lett. 2, 158 (1978).

    Google Scholar 

  8. M. Slatkine, I. J. Bigio, B. J. Feldman and R. A. Fischer, Opt. Lett. 7, 108 (1982), M. C. Gower and R. G. Garo, Opt. Lett. 7, 162 (1982).

    Article  ADS  Google Scholar 

  9. A. Yariv, J. Opt. Soc. Am. 66, 301 (1976); Appl. Phys. Lett. 28, 88 (1976).

    Article  ADS  Google Scholar 

  10. P. Avizonis et al., Appl. Phys. Lett. 31, 435 (1977).

    Article  ADS  Google Scholar 

  11. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).

    Google Scholar 

  12. D. Bloch and M. Ducloy, J. Phys. B.: At. Mol. Phys. 14, L 471 (1981).

    Article  ADS  Google Scholar 

  13. A. Yariv and D. M. Pepper, Opt. Lett. 1, 16 (1977).

    Article  ADS  Google Scholar 

  14. D. M. Pepper and R. L. Abrams, Opt. Lett. 3, 212 (1978).

    Article  ADS  Google Scholar 

  15. S. L. Jensen and R. W. Hellwarth, Appl. Phys. Lett. 32, 166 (1978); D. M. Bloom and G. C. Bjorklund, ibid,, 31, 592 (1977).

    Article  ADS  Google Scholar 

  16. [16]Exhautive lists of materials and laser wavelengths used in DFWM are given in Ref. [5].

    Article  ADS  Google Scholar 

  17. See, e g., N. Bloembergen and M. D. Levenson in High Resolution Laser Spectroscopy, p. 315 (Springer Verlag, Berlin, 1976).

    Google Scholar 

  18. A. Yariv, Opt. Commun 25, 23 (1978).

    Article  ADS  Google Scholar 

  19. J. Huignard, J. P. Herriau, P. Aubourg and E. Spitz, Opt. Lett. 4, 21 (1979).

    Article  ADS  Google Scholar 

  20. Note that, in general, the crystal response is non-local, i.e. there is a spatial phase-mismatch between the incident light fringes and the induced index grating. This mismatch is particularly important in Two-wave mixing experiments, and may produce an energy transfer between the two writing beams. See. e. g. D. L. Staebler and J. J. Amodei, J. Appl. Phys. 43, 1042 (1972); V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, Sov. Phys. Usp. 22, 742 (1979); also, Ferroelectrics 22, 961 (1979).

    Article  ADS  Google Scholar 

  21. A. Marrakchi, J. P. Huignard and J. P. Herriau, Opt. Commun. 34, 15 (1980).

    Article  ADS  Google Scholar 

  22. J. P. Huignard and J. P. Herriau, Appl. Opt. 16, 1807, 2796 (1977).

    Article  ADS  Google Scholar 

  23. J. P. Huignard and J. P. Herriau, Appl. Opt. 17, 2671 (1978); J. Feinberg, Opt. Lett. 5, 330 (1980).

    Article  ADS  Google Scholar 

  24. J. White and A. Yariv, Appl. Phys. Lett. 37, 5 (1980).

    Article  ADS  Google Scholar 

  25. H. J. Eichler: in Festkörperprobleme (Advances in Solid State Physics), Vol XVIII p. 241 J. Treusch (ed), Vieweg, Braunschweig 1979.

    Google Scholar 

  26. J. Hegarty, D. M. Sturge, A. C. Gossard and W. Wiegmann, Appl. Phys. Lett. 40 132 (1982).

    Article  ADS  Google Scholar 

  27. G. Martin and R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).

    Article  ADS  Google Scholar 

  28. P. F. Liao and D. M. Bloom, Opt. Lett. 3, 4 (1978); also H. I. Mandelberg, Opt. Lett, 5, 258 (1980).

    Article  ADS  Google Scholar 

  29. K. Yamada, Y. Fukuda and T. Hashi, J. Phys. Soc. Jap. 50, 592 (1981).

    Article  ADS  Google Scholar 

  30. M. Ducloy and D. Bloch, J. Phys. (Paris) 42, 711 (1981).

    Google Scholar 

  31. S. M. Wandzura, Opt. Lett. 4, 208 (1979).

    Article  ADS  Google Scholar 

  32. R. K. Jain, M. B. Klein and R. C. Lind, Opt. Lett. 4, 328 (1979).

    Article  ADS  Google Scholar 

  33. L. M. Humphrey, J. P. Gordon and P. F. Liao, Opt. Lett. 5, 56 (1980).

    Article  ADS  Google Scholar 

  34. For instance in resonant gases, the DFWM reflectivity may vary by seven orders of magnitude between θ=0 and θ=π/2 (See Ref. [30], p. 715).

    Google Scholar 

  35. P. F. Liao, D. M. Bloom and N. P. Economou, Appl. Phys. Lett. 32, 813 (1978).

    Article  ADS  Google Scholar 

  36. D. G. Steel and J. F. Lam, Opt. Comm. 40, 77 (1981); P. Aubourg et al., Opt. Lett. 6, 383 (1981).

    Article  ADS  Google Scholar 

  37. D. Bloch, R. K. Laj, K. S. Leng and M. Ducloy, Submitted to Phys. Rev. Lett.

    Google Scholar 

  38. M. Ducloy, R. K. Raj and D. Bloch, Opt. Lett. 7, 60 (1982).

    Article  ADS  Google Scholar 

  39. M. Kroll, Opt. Lett. 7, 151 (1982).

    Article  ADS  Google Scholar 

  40. T. Fu and M. Sargent III, Opt. Lett. 4, 366 (1979).

    Article  ADS  Google Scholar 

  41. J. Nilsen and A. Yariv, Appl. Opt. 18, 143 (1979); J. Opt. Soc. Am. 71, 180 (1981); Opt. Lett. 6, 380 (1981).

    Article  ADS  Google Scholar 

  42. R. L. Abrams and R. C. Lind, Opt. Lett. 2, 94 (1978); 3, 235 (1978).

    Article  ADS  Google Scholar 

  43. D. Block, R. K. Raj, J. J. Snyder and M. Ducloy, J. Phys. Lett. (Paris) 42, L 31 (1981).

    Google Scholar 

  44. This behavior of XNL has been inferred by J. P. Woerdman and M.F.H. Schuurmans [Opt. Lett. 6, 239 (1981)] from a simplified model based on the nonlinear response of stationary two-level atoms to a single plane wave. On the opposite an exact density-matrix calculation (D. Bloch and M. Ducloy, to be published) shows both the eminent role played by the velocity distribution in the behavior of the nonlinear susceptibility, and the quite distinct effects of the saturation induced by either pump wave (directional anisotropy). (See Ref. [37].)

    Google Scholar 

  45. M. Ducloy and D. Bloch, J. Phys. (Paris) 43, 57 (1982).

    Google Scholar 

  46. R. K. Raj, D. Bloch, J. J. Snyder, G. Camy and M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).

    Article  ADS  Google Scholar 

  47. D. Bloch, These de Troisieme Cycle (Universite Paris-Nord, 1980).

    Google Scholar 

  48. R. K. Raj, These d'Universite (Universite Paris-Nord, 1980).

    Google Scholar 

  49. See, e g., V. S. Letokhov and V. P. Chebotayev, Nonlinear Laser Spectroscopy, Springer Series in Optical Sciences, Vol. 4 (Springer Verlag, Berlin, 1977).

    Google Scholar 

  50. D. Bloch, R. K. Raj and M. Ducloy, Opt. Comm. 37, 183 (1981).

    Article  ADS  Google Scholar 

  51. C. Aminoff and M. Pinard, J. Phys. (Paris) 43, 263 (1982).

    Google Scholar 

  52. D. Bloch, R. K. Raj, E. Giacobino and M. Ducloy, communication to the First European Conference on Atomic Physics, Abstract V 3 (Heidelberg, April 1981).

    Google Scholar 

  53. J. Snyder R. K. Raj, E. Bloch and M. Ducloy, Opt. Lett. 5, 163 (1980)

    Article  ADS  Google Scholar 

  54. J. L. Hall, L. Hollberg, T. Baer and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981); G.C. Bjorklund, Opt. Lett. 5, 15 (1980).

    Article  ADS  Google Scholar 

  55. G. Camy, C. J. Borde and M. Ducloy, Opt. Commun. 41, 325 (1982).

    Article  ADS  Google Scholar 

  56. D. Bloch, M. Ducloy and E. Giacobino, J. Phys. B: At. Mol. Phys. 14, L 819 (1981).

    Article  ADS  Google Scholar 

  57. M. Matsuoka, Opt. Commun. 15, 84 (1975).

    Article  ADS  Google Scholar 

  58. D. C. Haueisen, Opt. Commun. 28, 183 (1978).

    Article  ADS  Google Scholar 

  59. T. Fu and M. Sargent, Opt. Lett. 5, 433 (1980); also G. Agrawal, Opt. Commun. 39, 272 (1981).

    Article  ADS  Google Scholar 

  60. P. F. Liao, N. P. Economou and R. R. Freeman, Phys. Rev. Lett. 39, 1473 (1977).

    Article  ADS  Google Scholar 

  61. D. G. Steel and J. F. Lam, Phys. Rev. Lett. 43, 1588 (1979).

    Article  ADS  Google Scholar 

  62. In anisotropic solids, polarization selection rules depend on the peculiar, symmetry order of the solid. In the nonlinear process, the solid may globally acquire a non-zero angular momentum, i.e. a torque is exerted on it. See. e. g. N. Bloembergen, J. Opt. Soc. Am. 70, 1429 (1980) and references therein.

    Article  ADS  Google Scholar 

  63. R. K. Raj, D. Bloch and M. Ducloy, to be published.

    Google Scholar 

  64. J. F. Lam, D. G. Steel, R. A. McFarlane and R. C. Lind, Appl. Phys. Lett. 38, 977 (1981).

    Article  ADS  Google Scholar 

  65. S. N. Jabr, L. K. Lam and R. W. Hellwarth, Phys. Rev. A 24, 3264 (1981).

    Article  ADS  Google Scholar 

  66. One predicts that for J→J transitions, C=(J−1) (J+2)/(3J2+3J−1) and for J→J+1 transitions, C=−J(2J+4)/(4J2+8J+5). (Refs. [38], [63].)

    Google Scholar 

  67. D.S. Hamilton, D. Heiman, J. Feinberg and R. W. Hellwarth, Opt. Lett. 4, 124 (1979).

    Article  ADS  Google Scholar 

  68. G. Martin, L. K. Lam and R. W. Hellwarth, Opt. Lett. 5, 185 (1980); see also B. Ya Zel'dovich and V. V. Shkunov, Sov. J. Quantum Electron 9, 379 (1979)

    Article  ADS  Google Scholar 

  69. I. M. Bel'Dyugin, M. G. Galushkin and E. M. Zemskov, Sov. J. Quantum Electron 9, 20, 1198 (1979).

    Article  ADS  Google Scholar 

  70. J. Auyeng, D. Fekete, D. M. Pepper and A. Yariv, IEEE J. Quantum Electron QE-15, 1180 (1979).

    Article  ADS  Google Scholar 

  71. J. F. Lam and W. P. Brown, Opt. Lett. 5, 61 (1980).

    Article  ADS  Google Scholar 

  72. P. A. Belanger, A. Hardy and A. E. Siegman, Appl. Opt. 19, 602 (1980).

    Article  ADS  Google Scholar 

  73. R. C. Lind and D. G. Steel, Opt. Lett. 6, 554 (1981).

    Article  ADS  Google Scholar 

  74. J. Feinberg and R. W. Hellwarth, Opt. Lett. 5, 319 (1980).

    Google Scholar 

  75. J. O. White, M. Cronin-Golomb, B. Fischer and A. Yariv, Appl. Phys. Lett. 40, 450 (1982).

    Article  ADS  Google Scholar 

  76. Nonlinear optical phase, conjugation, edited by R.A. Fischer, (Academic Press, 1982, to be published).

    Google Scholar 

  77. C. Flytzanis and C. L. Tang, Phys. Rev. Lett. 45, 441 (1980); G.P. Agrawal and C. Flytzanis, IEEE J. Quantum Electron. QE-17, 374 (1981).

    Article  ADS  Google Scholar 

  78. H. G. Winful and J. H. Marburger, Appl. Phys. Lett. 36, 613 (1980).

    Article  ADS  Google Scholar 

  79. A. Borshch, M. Brodin, V. Volkov, and N. Kukhtarev, Opt. Commun. 35, 287 (1980); 41, 213 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse Aachen

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Ducloy, M. (1982). Nonlinear optical phase conjugation. In: Grosse Aachen, P. (eds) Festkörperprobleme 22. Advances in Solid State Physics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107934

Download citation

  • DOI: https://doi.org/10.1007/BFb0107934

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08028-0

  • Online ISBN: 978-3-540-75370-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics