Skip to main content

Calculated atomic structures and electronic properties of clean and alkali covered GaAs(110) surfaces

  • Chapter
  • First Online:

Part of the book series: Advances in Solid State Physics ((ASSP,volume 31))

Abstract

A systematic theoretical study of clean and sodium covered GaAs(110) surfaces based on accurate, self-consistent total-energy and force calculations using the density-functional theory and ab-initio pseudopotentials is presented. The atomic and electronic structures of the clean and adsorbed surfaces are examined with plane wave basis sets. The adsorbed semiconductor surface is studied for different coverages. The atomic positions of the adsorbate and of the top three substrate layers are fully relaxed and detailed predictions of the surface geometries are given. During the formation of the metal-semiconductor contacts two different types of electronic states appear in the fundamental band gap; adatom related states and metal induced surface states. For the alkali adatoms an efficient and highly anisotropic diffusion parallel to the atomic chains of the GaAs(110) surface is found.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.J. Brillson, Surf. Sci. Rept. 2, 123 (1982), and references therein.

    Article  ADS  Google Scholar 

  2. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980); J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  4. X. Gonze, P. Käckell, and M. Scheffler, Phys. Rev. B 41, 12264 (1990).

    Article  ADS  Google Scholar 

  5. R. Stumpf, X. Gonze, and M. Scheffler: A list of separable, normconserving, ab-initio pseudopotentials, Fritz-Haber-Institut research report April 1990.

    Google Scholar 

  6. J. Hebenstreit, M. Heinemann, and M. Scheffler, to be published.

    Google Scholar 

  7. J. L. A. Alves, J. Hebenstreit, and M. Scheffler, to be published in Phys. Rev. B (1991).

    Google Scholar 

  8. S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).

    Article  ADS  Google Scholar 

  9. C. B. Duke and A. Paton, Surf. Sci. 164, L797 (1985).

    Article  ADS  Google Scholar 

  10. C. Mailhiot, C. B. Duke, and D. J. Chadi, Surf. Sci. 149, 366 (1985).

    Article  ADS  Google Scholar 

  11. A. C. Ferraz and G. P. Srivastava, Surf. Sci. 182, 161 (1987).

    Article  ADS  Google Scholar 

  12. S. B. Zhang and M. L. Cohen, Surf. Sci. 172, 754 (1986).

    Article  ADS  Google Scholar 

  13. G. X. Qian, R. M. Martin, and D. J. Chadi, Phys. Rev. B37, 1303 (1988).

    Article  ADS  Google Scholar 

  14. F. Manghi, E. Molinari, C. M. Bertoni, and C. Calandra, J. Phys. C: Solid State Phys. 15, 1099 (1982).

    Article  ADS  Google Scholar 

  15. G. P. Srivastava, I. Singh, V. Montgomery, and R. H. Williams, J. Phys. C: Solid State Phys. 16, 3627 (1983).

    Article  ADS  Google Scholar 

  16. C. Mailhiot, C. B. Duke, and D. J. Chadi, Phys. Rev. B 31, 2213 (1985).

    Article  ADS  Google Scholar 

  17. P. N. First, R. A. Dragoset, J. A. Stroscio, R. J. Celotta, and R. M. Feenstra, J. Vac. Sci. Technol. A7, 2868 (1989).

    Article  ADS  Google Scholar 

  18. L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, Phys. Rev. Lett. 66, 1338 (1991).

    Article  ADS  Google Scholar 

  19. N. J. DiNardo, T. Meada Wong, and E. W. Plummer, Phys. Rev. Lett. 65, 2177 (1990); T. Meada Wong, D. Heskett, N. J. DiNardo, and E. W. Plummer, Surf. Sci. 208, L1 (1989).

    Article  ADS  Google Scholar 

  20. R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, Phys. Rev. B 39, 12655 (1989).

    Article  ADS  Google Scholar 

  21. K. O. Magnusson, and B. Reihl, Phys. Rev. B 40, 7814 (1989); Phys. Rev. B 40, 5864 (1989).

    Article  ADS  Google Scholar 

  22. M. Prietsch, M. Domke, C. Laubschat, T. Mandel, C. Xue, and G. Kaindl, Z. Phys. B.-Condensed Matter 74, 21 (1989).

    Article  ADS  Google Scholar 

  23. J. Ortega and F. Flores, Phys. Rev. Lett. 63, 2500 (1989).

    Article  ADS  Google Scholar 

  24. C. Y. Fong, L. H. Yang, and I. P. Batra, Phys. Rev. B 40, 6120 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Rössler

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Hebenstreit, J. (1991). Calculated atomic structures and electronic properties of clean and alkali covered GaAs(110) surfaces. In: Rössler, U. (eds) Festkörperprobleme 31. Advances in Solid State Physics, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107865

Download citation

  • DOI: https://doi.org/10.1007/BFb0107865

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08039-6

  • Online ISBN: 978-3-540-75343-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics