Skip to main content

Quasi-One-Dimensional electron systems on GaAs/AlGaAs heterojunctions

  • Chapter
  • First Online:
Festkörperprobleme 28

Part of the book series: Advances in Solid State Physics ((ASSP,volume 28))

Abstract

Submicron lithography on semiconductor devices enables us to prepare very narrow inversion channels in which the electrons are free to move only in one dimension. Spatial confinement of the electronic motion in the remaining directions results in quantization of the electron energies, if the channels are sufficiently narrow. Among the various semiconductor systems, in which quasi-one-dimensional (1D) electron channels can be realized, here, preferentially, GaAs/AlGaAs heterojunctions with a periodically microstructured front gate will be discussed. In these structures application of a negative voltage between gate and electron system transforms the initially homogeneous two-dimensional electron system into an array of parallel 1D electron channels. The static magnetoresistance along the channels as well as the dynamic conductivity in the far-infrared spectral range are investigated at low temperatures and in high magnetic fields. Using simple models for the effective confining potential the energetical subband spacing, the electron density, the effective width of, the channels as well as the influence of many particle interactions on the resonance frequencies of the 1D intersubband resonances can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review see: T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  2. VLSI Electronics, Microstructure Science, Vol. 9, ed. by N. G. Einspruch (Academic Press, New York 1985)

    Google Scholar 

  3. For a review see: P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  4. S. J. Allen, D. C. Tsui, and R. A. Logan, Phys. Rev. Lett. 38, 980 (1977)

    Article  ADS  Google Scholar 

  5. E. Batke, D. Heitmann, and C. W. Tu, Phys. Rev. B34, 6951 (1986)

    Article  ADS  Google Scholar 

  6. W. J. Skocpol, L. D. Jackel, E. L. Hu, R. E. Howard, and L. A. Fetter, Phys Rev. Lett. 49, 951 (1982)

    Article  ADS  Google Scholar 

  7. R. G. Wheeler, K. K. Choi, A. Goel, R. Wisnieff, and D. E. Prober, Phys. Rev. Lett. 49, 1674 (1982)

    Article  ADS  Google Scholar 

  8. T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986)

    Article  ADS  Google Scholar 

  9. K. K. Choi, D. C. Tsui, and S. C. Palmateer, Phys. Rev. B33, 8216 (1986)

    Article  ADS  Google Scholar 

  10. K. K. Choi, D. C. Tsui, and K. Alavi, Phys. Rev. B36, 7751 (1987)

    Article  ADS  Google Scholar 

  11. H. van Houten, C. W. J. Beenakker, B. J. van Wees, and J. E. Mooij, Surf. Sci. 196, 144 (1988)

    Article  Google Scholar 

  12. A. B. Fowler, A. Hartstein, and R. A. Webb, Phys. Rev. Lett. 48, 196 (1982)

    Article  ADS  Google Scholar 

  13. C. P. Umbach, S. Washburn, R. B. Laibowitz, and R. A. Webb, Phys. Rev. B30 4048 (1984)

    Article  ADS  Google Scholar 

  14. W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A. D. Stone, Phys. Rev. Lett. 56, 2865 (1986)

    Article  ADS  Google Scholar 

  15. A. D. Stone, Phys. Rev. Lett. 54, 2692 (1985)

    Article  ADS  Google Scholar 

  16. B. L. Al'tshuler, Pis'ma, Zh. Eksp. Teor. Fiz. 41, 530 (1985) [JETP Lett. 41, 648 (1985)]; P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985)

    ADS  Google Scholar 

  17. R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985)

    Article  ADS  Google Scholar 

  18. G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. E. Howard, Phys. Rev. Lett. 58, 2814 (1987)

    Article  ADS  Google Scholar 

  19. C. P. Umbach, P. Santhanam, C. van Haesendonck, and R. A. Webb, Appl. Phys. Lett. 50, 1289 (1987)

    Article  ADS  Google Scholar 

  20. W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A. D. Stone, Phys. Rev. Lett. 58, 2347 (1987)

    Article  ADS  Google Scholar 

  21. A. M. Chang, G. Timp. J. E. Cunningham, P. M. Mankiewich, R. E. Behringer, R. E. Howard, and H. U. Baranger, submitted to Phys. Rev. B

    Google Scholar 

  22. A. C. Warren, D. A. Antoniadis, and H. I. Smith, Phys. Rev. Lett. 56, 1858 (1986)

    Article  ADS  Google Scholar 

  23. T. P. Smith, III, H. Arnot, J. M. Hong, C. M. Knoedler, S. E. Laux, and H. Schmid, Phys. Rev. Lett. 59, 2802 (1987)

    Article  ADS  Google Scholar 

  24. K.-F. Berggren, T. J. Thornton, D. J. Newson, and M. Pepper, Phys. Rev. Lett. 57, 1769 (1986)

    Article  ADS  Google Scholar 

  25. H. van Houten, B. J. van Wees, J. E. Mooij, G. Ross, and K.-F. Berggren, Superlattices and Microstructures 3, 497 (1987)

    Article  ADS  Google Scholar 

  26. J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 49, 1275 (1986)

    Article  ADS  Google Scholar 

  27. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988)

    Article  ADS  Google Scholar 

  28. W. Hansen, M. Horst, J. P. Kotthaus, U. Merkt, Ch. Sikorksi, and K. Ploog, Phys. Rev. Lett. 58, 2586 (1987)

    Article  ADS  Google Scholar 

  29. W. Hansen, Ph. D. thesis, Univ. Hamburg, 1987

    Google Scholar 

  30. J. P. Kotthaus, W. Hansen, H. Pohlmann, M. Wassermeier, and K. Ploog, Surf. Sci. 196, 600 (1988)

    Article  ADS  Google Scholar 

  31. F. Brinkop, W. Hansen, J. P. Kotthaus, and K. Ploog, Phys. Rev. B37, 6547 (1988)

    Article  ADS  Google Scholar 

  32. W. Y. Lai and S. Das Sarma, Phys. Rev. B33, 8874 (1986)

    Article  ADS  Google Scholar 

  33. S. E. Laux and F. Stern, Appl. Phys. Lett. 49, 91 (1986)

    Article  ADS  Google Scholar 

  34. U. Wulf, Phys. Rev. B35, 9754 (1987)

    Article  ADS  Google Scholar 

  35. S. E. Laux, D. J. Frank, and F. Stern, Surf. Sci. 196, 101 (1988)

    Article  ADS  Google Scholar 

  36. S. Das Sarma and W. Y. Lai, Phys. Rev. B32, 1401 (1985)

    Article  ADS  Google Scholar 

  37. D. Childers and P. Pincus, Phys. Rev. 177, 1036 (1969)

    Article  ADS  Google Scholar 

  38. S. B. Kaplan and A. C. Warren, Phys. Rev. B34, 1346 (1986)

    Article  ADS  Google Scholar 

  39. L. Smrčka, H. Havlova, and A. Isihara, J. Phys. C19, L475 (1986)

    Article  ADS  Google Scholar 

  40. A. Isihara, K. Ebina, L. Smrčka, and H. Havlova, in: High Magnetic Fields in Semiconductor Physics, ed. by G. Landwehr (Springer, Ber 1987), p. 332

    Google Scholar 

  41. S. Das Sarma and X. C. Xie, Phys. Rev. B35, 9875 (1987)

    Article  ADS  Google Scholar 

  42. M. J. Kearney and P. N. Butcher, J. Phys. C20, 47 (1987)

    Article  ADS  Google Scholar 

  43. S. J. Allen, Jr., H. L. Störmer, and J. C. M. Hwang, Phys. Rev. B28, 4875 (1983)

    Article  ADS  Google Scholar 

  44. S. J. Allen, Jr., F. DeRosa, G. H. Dolan, and C. W. Tu, in Proceedings of the 17th Intern. Conf. on the Physics of Semiconductors, ed. by J. D. Chadi and W. A. Harrison (Springer, New York 1985), p. 313

    Google Scholar 

  45. R. P. Leavitt and J. W. Little, Phys. Rev. B34, 2450 (1986)

    Article  ADS  Google Scholar 

  46. W. Hansen, J. P. Kotthaus, A. V. Chaplik, and K. Ploog, in: High Magnetic Fields in Semiconductor Physics, ed. by G. Landwehr (Springer, Berlin 1987), p. 266

    Google Scholar 

  47. D. M. Wood and N. W. Ashcroft, Phys. Rev. B25, 6255 (1982)

    Article  ADS  Google Scholar 

  48. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York 1941), pp. 211–213

    MATH  Google Scholar 

  49. Many-body contributions to the resonance frequency have not been considered so far in theoretical considerations directly devoted to 1D intersubband resonances: J. Lee, J. Appl. Phys. 54, 5482 (1983) V. K. Arora, in: Proceedings of the 17th Intern. Conf. on the Physics of Semiconductors, ed. by J. D. Chadi and W. A. Harrison (Springer, New York 1985), p. 1461

    Article  ADS  Google Scholar 

  50. J. P. Kotthaus, Physica Scripta T19, 120 (1987)

    Article  ADS  Google Scholar 

  51. K. K. Choi, D. C. Tsui, and K. Alavi, Appl. Phys. Lett. 50, 110 (1987)

    Article  ADS  Google Scholar 

  52. H. van Houten, B. J. van Wees, M. G. J. Heijmann, and J. P. André, Appl. Phys. Lett. 49, 1781 (1986)

    Article  ADS  Google Scholar 

  53. R. E. Behringer, P. M. Mankiewich, and R. E. Howard, J. Vac. Sci. Technol. B5, 326 (1987)

    Article  Google Scholar 

  54. A. Scherer, M. L. Roukes, H. G. Craighead, R. M. Ruthen, E. D. Beebe, and J. P. Harbison, Appl. Phys. Lett., 51, 2133 (1987)

    Article  ADS  Google Scholar 

  55. D. R. Hofstadter, Phys. Rev. B14, 2239 (1976)

    Article  ADS  Google Scholar 

  56. M. J. Kelly, J. Phys. C18, 6341 (1985), and references therein

    Article  ADS  Google Scholar 

  57. E. Gornik, R. Christanell, R. Lassnig, W. Beinstingel, K. Berthold, G. Weimann, in Proceedings of the 5th International Conference on Hot Carriers in Semiconductors, Solid-State Electronics 31, 751 (1988)

    Google Scholar 

  58. G. Bernstein and D. K. Ferry, Superlattices and Microstructures 2, 373 (1986)

    Article  ADS  Google Scholar 

  59. H. Kroemer, Phys. Rev. B15, 880 (1977) and references therein

    Article  ADS  Google Scholar 

  60. H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980)

    Article  ADS  Google Scholar 

  61. Y. Tokura and K. Tsubaki, App. Phys. Lett. 51, 1807 (1987)

    Article  ADS  Google Scholar 

  62. U. Mackens, D. Heitmann, L. Prager, J. P. Kotthaus, and W. Weinvogl, Phys. Rev. Lett 53, 1485 (1984)

    Article  ADS  Google Scholar 

  63. M. V. Krasheninnikov and A. V. Chaplik, Fiz. Tekh. Popuprovodn. 15, 32 (1981) [Sov. Phys. Semicond. 15, 19 (1981)]

    Google Scholar 

  64. M. J. Kelly, J. Phys. C18, 4335 (1985)

    Article  ADS  Google Scholar 

  65. W. Y. Lai, A. Kobayashi, and S. Das Sarma, Phys. Rev. B34, 7380 (1986).

    Article  ADS  Google Scholar 

  66. J. Alsmeier, Ch. Sikorski, and U. Merkt, Phys. Rev. B37, 4314 (1988)

    Article  ADS  Google Scholar 

  67. E. Batke, D. Heitmann, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 54, 2367 (1985)

    Article  ADS  Google Scholar 

  68. G. Timp, H. U. Baranger, P. de Vegvar, J. E. Cunningham, R. E. Howard, R. Behringer, and P. M. Mankiewich, to be published

    Google Scholar 

  69. M. L. Roukes, A. Scherer, S. J. Allen, Jr., H. G. Craighead, R. M. Ruthen, E. D. Beebe, and J. P. Harbison, Phys. Rev. Lett. 59, 3011 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

U. Rössler

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Hansen, W. (1988). Quasi-One-Dimensional electron systems on GaAs/AlGaAs heterojunctions. In: Rössler, U. (eds) Festkörperprobleme 28. Advances in Solid State Physics, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107851

Download citation

  • DOI: https://doi.org/10.1007/BFb0107851

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08034-1

  • Online ISBN: 978-3-540-75352-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics