Skip to main content

Physics of metal organic chemical vapour deposition

  • Chapter
  • First Online:
Festkörperprobleme 26

Part of the book series: Advances in Solid State Physics ((ASSP,volume 26))

Abstract

Within the past decade metal organic chemical vapour deposition (MOCVD) has developed into a major method for the growth of single crystal III–V semiconductor layers. Single layers, heterostructures, and superlattice configurations from these materials have been growth successfully by MOCVD. The quality of such layers is close to or even better than obtained by other deposition techniques.

The growth process, in a simplifying manner, can be described by two steps. One is the transport of the molecules, participating in the process, to the gas-solid interface. The other step includes the reactions near or at the interface, leading to the formation of crystalline material.

The transport problem is fairly well understood on a quantitative level in terms of the hydrodynamics in a non-isothermal medium. It is possible nowadays to determine experimentally the relevant hydrodynamical parameters (temperature, velocity, partial pressure) in situ through optical measurements. In addition, computational possibilities have increased so much that realistic boundary conditions can be handled in connection with the hydrodynamic equations. However, the level of experimental knowledge about the kinetic processes at the interface is still in a rather poor state. A number of speculative models exist, which clearly need more input from experiments performed in situ in MOCVD reactors.

This article summarizes the present knowledge from diagnostic investigations with the focus on the MOCVD process for GaAs at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Manasevit, Appl. Phys. Lett., 11, 156 (1968)

    Article  ADS  Google Scholar 

  2. Y. Seki, K. Tanno, K. Iida, and E. Ichiki, J. Electrochem. Soc. 122, 1108 (1975)

    Article  Google Scholar 

  3. H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc. 122, 44 (1975)

    Article  Google Scholar 

  4. H. M. Manasevit, R. P. Ruth, and W. I. Simpson, to appear in [7]

    Google Scholar 

  5. Proc. ICMOVPE I, J. Crystal Growth Volume 55 (1981)

    Google Scholar 

  6. Proc. ICMOVPE II, J. Crystal Growth Volume 68 (1984)

    Google Scholar 

  7. Proc. ICMOVE III, J. Crystal Growth, to be published (1986)

    Google Scholar 

  8. “Organometallics for Vapour Phase Epitaxy”, brochure published by Morton Thiokol, Inc., Alfa Products, 152 Andover Street, Danvers, Mass. 01923, USA (1985)

    Google Scholar 

  9. G. B. Stringfellow, J. Crystal Growth 68, 111 (1984)

    Article  ADS  Google Scholar 

  10. L. Hollan, J. P. Hallais, and J. C. Brice, in Current Topics in Materials Science, ed. by E. Kaldis (North Holland, Amsterdam 1980), Vol. 5, p. 155

    Google Scholar 

  11. P. D. Dapkus, Annual Review Materials Science 12, 243 (1982)

    Article  ADS  Google Scholar 

  12. B. J. Curtis, Physico Chemical Hydrodynamics 2, 357 (1981)

    Google Scholar 

  13. V. S. Ban, J. Crystal Growth 45, 97 (1978)

    Article  ADS  Google Scholar 

  14. G. Wahl, Thin Solid Films 40, 13 (1977)

    Article  ADS  Google Scholar 

  15. M. R. Leys, C. van Opdorp, M. P. A. Viegers, and H. J. Talen-Van der Mheen, J. Crystal Growth 68, 431 (1984)

    Article  ADS  Google Scholar 

  16. J. Juza and J. Cermak, J. Electrochem. Soc. 129, 1627 (1982)

    Article  Google Scholar 

  17. F. C. Eversteyn, P. J. W. Severin, C. H. J. v. d. Brekel, and H. L. Peek, J. Electrochem. Soc. 117, 925 (1970)

    Article  Google Scholar 

  18. J. Bloem and L. J. Giling, in Current Topics in Materials Science, ed. by E. Kaldis (North Holland, Amsterdam 1978) Vol. 1, p. 147

    Google Scholar 

  19. D. H. Reep and S. K. Ghandhi, J. Crystal Growth 61, 449 (1983)

    Article  ADS  Google Scholar 

  20. H. Heinecke, E. Veuhoff, N. Pütz, M. Heyen, and P. Balk, J. Electron. Mat. 13, 815 (1984)

    Article  ADS  Google Scholar 

  21. N. Watanabe and Y. Mori, Proc. of the MSSII Conf., Surface Science to be published

    Google Scholar 

  22. G. B. Stringfellow, J. Crystal Growth 62, 225 (1983)

    Article  ADS  Google Scholar 

  23. A. Koukitu, T. Suzuki, and H. Seki, J. Crystal Growth 74, 181 (1985)

    Article  Google Scholar 

  24. W. Jost, Diffusion in Solids, Liquids, Gases, (Academic Press, New York 1961), p. 423

    Google Scholar 

  25. D. H. Reep and S. K. Ghandhi, J. Electrochem. Soc. 130, 675 (1983)

    Article  ADS  Google Scholar 

  26. R. B. Bird, W. E. Stewart, and E. N. Lightfoot Transport Phenomena, (Wiley, New York 1962)

    Google Scholar 

  27. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, (North Holland, Amsterdam 1962)

    Google Scholar 

  28. H. Schlichting, Boundary Layer Theory, (McGraw-Hill, New York 1968)

    Google Scholar 

  29. H. Moffat and K. Jensen, to appear in [7] Proc. ICMOVE III, J. Crystal Growth, to be published (1986)

    Google Scholar 

  30. L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech. 101, 737 (1980)

    Article  ADS  Google Scholar 

  31. R. Takahashi, Y. Koga, and K. Sugawara, J. Electrochem. Soc. 119, 1406 (1972)

    Article  Google Scholar 

  32. C. A. Wang, D. W. Weyburne, R. A. Brown, S. H. Groves, and S. C. Palmeteer, to appear in [7] Proc. ICMOVE III, J. Crystal Growth, to be published (1986)

    Google Scholar 

  33. M. Koppitz, O. Vestavik, W. Pletschen, A. Mircea, M. Heyen, and W. Richter, J. Crystal Growth 68, 136 (1984)

    Article  ADS  Google Scholar 

  34. L. J. Giling, J. Physique C5, 235 (1982)

    Google Scholar 

  35. L. Stock and W. Richter, to appear in [7] Proc. ICMOVE III, J. Crystal Growth, to be published (1986)

    Google Scholar 

  36. T. S. Durrani and C. A. Greated, Laser Systems in Flow Measurement, (Plenum Press, New York 1977)

    Google Scholar 

  37. F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry, (Academic Press, London 1976)

    Google Scholar 

  38. J. E. Butler, N. Bottka, R. S. Sillmon, and D. K. Gaskill, to appear in [7] Proc. ICMOVE III, J. Crystal Growth, to be published (1986)

    Google Scholar 

  39. M. Koppitz, W. Richter, R. Bahnen, and M. Heyen, in Springer Tracts on Chemical Physics, ed. by D. Bäuerle, (Springer, Berlin 1984), Vol. 39, p. 530

    Google Scholar 

  40. D. J. Schleyer and M. A. Ring, J. Organometallic Chem. 114, 9 (1976)

    Article  Google Scholar 

  41. M. R. Leys and H. Veenvliet, J. Crystal Growth 55, 145 (1981).

    Article  ADS  Google Scholar 

  42. J. Nishizawa and T. Kurabayashi, J. Electrochem. Soc. 130, 413 (1983)

    Article  Google Scholar 

  43. M. R. Leys, private communication

    Google Scholar 

  44. M. Yoshida, H. Watanabe, and F. Uesugi, J. Electrochem. Soc. 132, 667 (1985)

    Google Scholar 

  45. G. Arens, H. Heinecke, N. Pütz, H. Lüth, and P. Balk, to be published

    Google Scholar 

  46. C. E. Coates, M. L. H. Green, and K. Wade, Organometallic Compounds, (Methuen, London 1967), Vol. 1

    Google Scholar 

  47. T. F. Kuech and E. Veuhoff, J. Crystal Growth 68, 148 (1984)

    Article  ADS  Google Scholar 

  48. M. G. Jacko and S. W. J. Price, Canad. J. Chem. 41, 1560 (1963)

    Article  Google Scholar 

  49. J. Haigh and S. O'Brien, J. Crystal Growth 67, 75 (1984)

    Article  ADS  Google Scholar 

  50. D. J. Ashen, P. J. Dean, D. T. J. Hurle, J. B. Mullin, and M. White, J. Phys. Chem. Solids 36, 1041 (1975)

    Article  ADS  Google Scholar 

  51. K. Mohammed and J. L. Merz, Appl. Phys. Lett. 43, 103 (1983)

    Article  ADS  Google Scholar 

  52. J. Hallais, Acta Electronica 21, 129 (1978)

    Google Scholar 

  53. N. Pütz, E. Veuhoff, H. Heinecke, M. Heyen, H. Lüth, and P. Balk, J. Vac. Sci. Technol. B3, 671 (1985)

    Article  Google Scholar 

  54. W. T. Tsang, T. H. Chiu, J. E. Cunningham, and R. C. Miller, to appear in [7] Proc. ICMOVE III, J. Crystal Growth, to be published (1986)

    Google Scholar 

  55. H. Heinecke, A. Brauers, H. Lüth, and P. Balk, to appear in [7] Proc. ICMOVE III, J. Crystal Growth, to be published (1986)

    Google Scholar 

  56. N. Pütz, H. Heinecke, E. Veuhoff, G. Arens, M. Heyen, H. Lüth, and P. Balk, J. Crystal Growth 68, 194 (1984)

    Article  Google Scholar 

  57. P. Balk, H. Heinecke, C. Plass, N. Pütz, and H. Lüth, to appear in J. Vac. Sci. Technol. A1, 1986

    Google Scholar 

  58. V. M. Donelly, D. Brasen, A. Appelbaum, and M. Geva, J. Appl. Phys. 58, 2022 (1985)

    Article  ADS  Google Scholar 

  59. J. Haigh, J. Vac. Sci. Technol. B3, 1456 (1985).

    Article  Google Scholar 

  60. S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. Danner, and H. C. Lee, to appear in [7] Proc. ICMOVE III, J. Crystal Growth, to be published (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Richter, W. (1986). Physics of metal organic chemical vapour deposition. In: Grosse, P. (eds) Festkörperprobleme 26. Advances in Solid State Physics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107803

Download citation

  • DOI: https://doi.org/10.1007/BFb0107803

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08032-7

  • Online ISBN: 978-3-540-75359-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics