Skip to main content

Optics with gradients of free carrier concentration

  • Chapter
  • First Online:
Festkörperprobleme 26

Part of the book series: Advances in Solid State Physics ((ASSP,volume 26))

Abstract

In semiconductors extremely large gradients of the refractive and/or absorption index exist if the free carrier concentration is a steep local function. Such profiles are stationary due to a corresponding doping inhomogeneity (e. g. doping by diffusion or ion implantation) or in the case of band bending. They are non-stationary in cases of an inhomogeneously time-dependent excitation (e.g. caused by application of pulses of LASER or electron radiation). The propagation of light is considered with respect to the influence of free carrier profiles on the integral transmission, reflection, and absorption of a sample. Different local functions of free carrier concentrations are also considered. Some possible applications of these optical properties will be discussed.

A particular point of interest is the question of the reciprocity of light propagation through inhomogeneous structures.

The aspects of profile analysis by means of optical spectroscopy are considered. The special technique of preparing an inclined surface through the profile leads to a higher spatial resolution in profile analysis based on a technique scanning along the spread-out profile.

In crossed electric and magnetic fields the free carrier compression by Lorentz force leads to a significant free carrier profile with components of enhancement but also of depletion. If the processes of photon extraction by free ocarrier generation dominates the integral, radiation emitted from the semiconductor can be lower than its equilibrium temperature radiation. This phenomenon of “negative luminescence radiation” is experimentally verified and will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Wait, Electromagnetic Waves in Stratified Media, Oxford, 1964

    Google Scholar 

  2. K. Iizuka, Engineering Optics, Berlin, 1985

    Google Scholar 

  3. C. N. Waddell, W. G. Spitzer, G. K. Hubler, and J. E. Fredricson, J. Appl. Phys. 53, 5851 (1982)

    Article  ADS  Google Scholar 

  4. Yu. A. Romanov and L. K. Orlov, Sov. Phys.-Semicond. 7, 182 (1972)

    Google Scholar 

  5. G. H. Döhler, in: Festkörperprobleme: Advances in Solid State Physics, ed. by P. Grosse (Vieweg, Braunschweig 1983), Vol. XXIII, p. 207

    Google Scholar 

  6. H. Krömer, Braunschweigische Wiss. Ges., Jahrbuch 1984, p. 53

    Google Scholar 

  7. S. Lundqvist and N. H. March, Theory of the Inhomogeneous Electron Gas, New York, 1983

    Google Scholar 

  8. J. D. Axe and R. Hammer, Phys. Rev. 162, 700 (1967)

    Article  ADS  Google Scholar 

  9. R. Memming, Philips Techn. Rundschau 38, 157 (1979)

    ADS  Google Scholar 

  10. H.-D. Geiler, K. Hehl, and D. Stock, Phys. stat. sol. (a) 78, 193 (1983)

    Article  ADS  Google Scholar 

  11. C. v. Fragstein and F. R. Keßler Optik 66, 9 (1983)

    Google Scholar 

  12. E. Hild and A. Grofcsik, Infrared Phys. 18, 23 (1978)

    Article  ADS  Google Scholar 

  13. A. Sharma, D. V. Kumar, and A. K. Ghatak, Appl. Opt. APOPA 21, 984 (1982)

    Article  ADS  Google Scholar 

  14. M. Born and E. Wolf, Principles of Optics, Oxford, 1964

    Google Scholar 

  15. Toshio Abe and Taketoshi Kato, Jap. J. Appl. Phys. 4, 742 (1965)

    Article  ADS  Google Scholar 

  16. Toshio Abe and Yoshio Nishi, Jap. J. Appl. Phys. 7, 397 (1968)

    Article  ADS  Google Scholar 

  17. V. F. Lawrence and H. Hora, Optik 55, 291 (1980)

    Google Scholar 

  18. F. R. Keßler, Abh. Branschweigischen Wiss. Ges. XXXVI, 45 (1984)

    Google Scholar 

  19. P. A. Schumann jr., Solid-State Techn. 13, 50 (1970)

    Google Scholar 

  20. I. C. Irvin, Bell Syst. Techn. J. 41, 387 (1962)

    Google Scholar 

  21. K. Hölzlein, G. Pensl, and M. Schulz, Appl. Phys. 23, 7 (1980)

    Article  ADS  Google Scholar 

  22. L. M. Lambert, J. Appl. Phys. 43, 4612 (1972)

    Article  ADS  Google Scholar 

  23. M. I. Gallant and H. M. van Driel, Phs. Rev. 26, 2133 (1982)

    ADS  Google Scholar 

  24. P. C. Hein, M. I. Gallant, and H. M. van Driel, Solid State Comm. 39, 601 (1981)

    Article  ADS  Google Scholar 

  25. R. B. Fair, J. Electrochem. Soc. 122, 800 (1975)

    Article  Google Scholar 

  26. E. Lüscher, P. Korpiun, H. J. Coufal, and R. Tilgner (Ed.), Photoacoustic Effect—Principles and Application, (Vieweg, Wiesbaden 1984)

    Google Scholar 

  27. A. Schmitt and H. Wagner, IBM Techn. Discl. Bull. 23, 222 (1980)

    Google Scholar 

  28. H. D. Riccius and G. Ulbricht, Z. angew. Phys. 19, 203 (1965)

    Google Scholar 

  29. P. Ziemann, in Festkörperprobleme: Advances in Solid State Physics, ed. by P. Grosse (Vieweg, Braunschweig 1983), Vol. XXIII, p. 93

    Google Scholar 

  30. J. S. Williams and J. M. Poate (Ed.), Ion Implantation and Beam Processing, Sydney, 1984

    Google Scholar 

  31. H. Ryssel and I. Ruge, Ionenimplantation, Stuttgart, 1985

    Google Scholar 

  32. H. Oechsner (Ed.), Thin-Film and Depth-Profile Analysis, Springer, Berlin, 1984

    Google Scholar 

  33. H. Ryssel and H. Glawischnig (Ed.), Ion Implantation Techniques, Berlin, 1982

    Google Scholar 

  34. H. Ryssel and H. Glawischnig (Ed.), Ion Implantation: Equipment and Techniques, Berlin 1983

    Google Scholar 

  35. H. Sigmund and D. Weiss, p. 473 in: [34] Ion Implantation: Equipment and Techniques, Berlin 1983.

    Google Scholar 

  36. H. M. A. Schleijpen, Diplomarbeit, Techn. Hogeschool, Eindhoven, 1983

    Google Scholar 

  37. H. M. van Driel, J. S. Preston and M. I. Gallant, Appl. Phys. Lett. 40, 385 (1982).

    Article  ADS  Google Scholar 

  38. P. Baeri, S. U. Campisano, G. Foti, and E. Rimini, J. Appl. Phys. 50, 788 (1979).

    Article  ADS  Google Scholar 

  39. A. Lietoila and J. F. Gibbons, J. Appl. Phys. 53, 3207 (1982)

    Article  ADS  Google Scholar 

  40. L. M. Blinov, V. S. Vavilov, and G. N. Galkin, Soviet Phys. Semicond. (USA) 1, 1124 (1967)

    Google Scholar 

  41. A. Fortini, R. Lande, R. Madelon, and Ph. Baudin, J. Appl. Phys. 45, 3380 (1974)

    Article  ADS  Google Scholar 

  42. C. V. Shank and D. H. Auston, Phys. Rev. Lett. 34, 479 (1975)

    Article  ADS  Google Scholar 

  43. E. Elci, M. O. Scully, A. L. Smirl, and J. C. Matter, Phys. Rev. B 16, 191 (1977)

    Article  ADS  Google Scholar 

  44. A. Miller, D. A. B. Miller, S. D., Smith, Adv. Phys. 30, 697 (1981)

    Article  ADS  Google Scholar 

  45. H. Berger, V. Brückner, and B. Schröder, Opt. Quant. Electr. 14, 245 (1982).

    Article  Google Scholar 

  46. C. A. Huber and A. V. Nurmikko, J. Appl. Phys. 54, 326 (1983)

    Article  ADS  Google Scholar 

  47. F. R. Keβler and H. Bettin, Verhandl. DPG (VI) 21, 1123 (1986).

    Google Scholar 

  48. Lord Rayleigh, Proc. Roy. Soc. A 25, 118 (1877)

    Google Scholar 

  49. A. Sommerfeld, Jahrb. d. drahtlosen Telegraphie 26, 93 (1925) and 37, 167 (1931)

    Google Scholar 

  50. C. v. Fragstein, Optik 9, 337 (1952)

    MathSciNet  Google Scholar 

  51. F. Wooten, Optical Properties of Solids, New York, 1972

    Google Scholar 

  52. A. D. Kutz and R. Yee, J. Appl. Phys. 31, 303 (1960)

    Article  ADS  Google Scholar 

  53. E. Barta and F. Halasz, Infrared Phys. 17, 319 (1977)

    Article  ADS  Google Scholar 

  54. E. Barta and G. Lux, J. Phys. D: Appl. Phys. 16, 1543 (1983).

    Article  ADS  Google Scholar 

  55. G. Gavrilis, Dissertation, Techn. Univ. Brunschweig, 1984

    Google Scholar 

  56. E. Barta, Acta Techn. Acad. Sci. Hungaricae 73, 453 (1972)

    Google Scholar 

  57. R. Fletcher and M. J. D. Powell, Computer J., 163 (1963)

    Google Scholar 

  58. F. R. Kekßler, R. Nies, and K. R. Harms, Wiss. Ber. HMFA Braunschweig 8, in print (1986)

    Google Scholar 

  59. K. F. Heidemann, Philos. Mag. B 44, 465 (1981)

    Article  Google Scholar 

  60. K. F. Heidemann, phys. stat. sol. (a) 68, 607 (1981)

    Article  ADS  Google Scholar 

  61. F. R. Keßler, U. Barkow, and U. Pätzold, Phys. stat. sol. (a) 92, K37 (1985).

    Article  ADS  Google Scholar 

  62. U. Pätzold, Diplomarbeit, Techn. Univ. Braunschweig, 1984

    Google Scholar 

  63. F. Gaiseanu, phys. stat. Sol. (a) 77, K59 (1983)

    Article  ADS  Google Scholar 

  64. H. Welker, Z. Naturforschg. 6a, 184 (1951)

    ADS  Google Scholar 

  65. F. R. Keßler and J. W. Mangelsdorf, Wiss. Ber. HMFA Braunschweig 5, 103 (1977/78)

    Google Scholar 

  66. J. W. Mangelsdorf, Dissertation, Techn. Univ. Braunschweig, 1980

    Google Scholar 

  67. F. R. Keßler and J. W. Mangelsdorf, phys. stat. sol. (b) 105, 525 (1981)

    Article  ADS  Google Scholar 

  68. V. P. Zhebryunajte, Yu. K. Pozhela, A. P. Sashchuk, and Stalerajtis, Liet. Fiz. Rinkinys 21, 33 (1981).

    Google Scholar 

  69. F. R. Keßler, F. Walloch, and U. Barkow, Verhandl. DPG (VI) 19, 117 (1984)

    Google Scholar 

  70. F. Walloch, Diplomarbeit, Techn. Univ. Braunschweig, 1984

    Google Scholar 

  71. F. R. Keßler, W. Koeppen, and E. Gaulke, Phys. stat. sol. (b) 127, K175 (1985)

    Article  ADS  Google Scholar 

  72. C. Ayache and I. L. Spain, Phil. Mag. B 42, 597 (1980)

    Article  Google Scholar 

  73. H. Mette, W. W. Gaertner and C. Loscoe, Phys. Rev. 117, 1491 (1960).

    Article  ADS  Google Scholar 

  74. I. S. Lisker and M. B. Pevzner, INZH.-FIZ. ZH (USSR) 36, 460 (1979)

    Google Scholar 

  75. W. Schneider and K. Behler, Appl. Phys. 17, 249 (1978)

    Article  ADS  Google Scholar 

  76. S. Cristoloveanu and J. H. Lee, J. Phys. C: solid State Phys. 13, 5983 (1980)

    Article  ADS  Google Scholar 

  77. S. Cristoloveanu and P. Viktorovitch, phys. stat. sol. (a) 39, 109 (1977)

    Article  ADS  Google Scholar 

  78. J. Houghton and P. C. Banbury, Report of the Meeting on Semiconductors, London, 1956, p. 89

    Google Scholar 

  79. P. Würfel and W. Ruppel, J. Phys. C: Solid State Phys. 18, 2987 (1985)

    Article  ADS  Google Scholar 

  80. W. van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954)

    Article  ADS  Google Scholar 

  81. M. Bernard and M. Loudette, C. R. Acad. Sci. (France) 246, 1174 (1958)

    Google Scholar 

  82. M. Bernard, J. Phys. Chem. Solids 8, 332 (1959)

    Article  ADS  Google Scholar 

  83. G. Richter und G. Schleifstein, Phys. stat. sol. 30, K97 (1968)

    Article  ADS  Google Scholar 

  84. F. R. Keßler, Abh. Braunschweigischen Wiss. Ges. XXXII, 75 (1981)

    Google Scholar 

  85. V. K. Malyutenko, S. S. Bolgov, and E. I. Yablonovsky, Infrared Phys. 25, 115 (1985)

    Article  ADS  Google Scholar 

  86. T. Morimoto and M. Chiba, Phys. Lett. 85A, 395 (1981)

    ADS  Google Scholar 

  87. P. Berdahl and L. Shaffer, Appl. Phys. Lett. 47, 1330 (1986)

    Article  ADS  Google Scholar 

  88. V. I. Gavrilenko, V. N. Murzin, S. A. Stoklitskii, and A. P. Chebotarev, JETP Lett. 35, 97 (1982)

    ADS  Google Scholar 

  89. P. Berdahl, J. Appl. Phys. 58, 1369 (1985)

    Article  ADS  Google Scholar 

  90. B. Harbecke, Appl. Phys. B 39, 165 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Keßler, F.R. (1986). Optics with gradients of free carrier concentration. In: Grosse, P. (eds) Festkörperprobleme 26. Advances in Solid State Physics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107801

Download citation

  • DOI: https://doi.org/10.1007/BFb0107801

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08032-7

  • Online ISBN: 978-3-540-75359-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics