Skip to main content

Forced light scattering at laser-induced gratings—A method for investigation of optically excited solids

  • Chapter
  • First Online:

Part of the book series: Advances in Solid State Physics ((ASSP,volume 18))

Abstract

The optical properties (refractive index and coefficient of absorption) of matter become spatially modulated in the interference region of two intensive light waves. The resulting grating patterns have been observed in liquids and solids by diffraction (“forced light scattering”) of a probing beam or by self-diffraction. Thereby the spatial amplitude of the optical constants is measured with interferometric sensitivity. Permanent gratings by been investigated extensively for holographic applications. This paper emphazises transient gratings, methods for measurement of fast grating decay times, and excitation mechanisms. Thermal gratings, corresponding to a spatially periodic temperature distribution, have been applied for temperature diffusivity measurements and excitation of different types of sound waves. In semiconductors gratings have been produced corresponding to a spatial modulation of the free carrier or exciton density.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. Eichler, Optica Acta 24, 631 (1977); This survey paper contains 57 references relevant to laser-induced gratings which appeared up to 1976.

    ADS  Google Scholar 

  2. H. Kogelnik, Proc. Symp. Mod. Opt. (New York: Polytechnic Press) p. 612 (1967); Bell Syst. tech. J. 48, 2909 (1969); I. Schneider, M. E. Gingerich, Appl. Opt. 15, 2428 (1976).

    Google Scholar 

  3. H. M. Smith (Editor), Holographic Recording Materials, (Berlin: Springer-Verlag) (1977); R. von Baltz, Verhandl. DPG (VI) 13, 174 (1978); W. Kraut, Verhandl. DPG (VI) 13, 174 (1978); W. Jösch, R. Munser, P. Würfel, W. Ruppel, Verhandl. DPG (VI) 13, 175 (1978); W. Meyer, P. Würfel, R. Munser, Verhandl. DPG (VI) 13, 175 (1978); E. Krätzig, R. Orlowski, Verhandl. DPG (VI) 13, 185 (1978).

    Google Scholar 

  4. H. J. Eichler, Ch. Hartig, J. Knof, phys. stat. sol. (a) 45, 433 (1978).

    Article  ADS  Google Scholar 

  5. D. W. Phillion, D. J. Kuizenga, A. E. Siegman, Appl. Phys. Lett. 27, 85 (1975).

    Article  ADS  Google Scholar 

  6. A. E. Siegman, Appl. Phys. Lett. 30, 21 (1977); Moving gratings are also discussed by M. Sargent, Appl. Phys. 9, 127 (1976); D. I. Stasel'ko, V. G. Sidorovich, Sov. Phys. Tech. Phys. 21, 205 (1976).

    Article  ADS  Google Scholar 

  7. T. Yajima, Opt. Comm. 14, 378 (1975); T. Yajima, H. Souma, Y. Ishida, Opt. Comm. 18, 150 (1976), Phys. Rev. A 17, 309 and 324 (1978); T. Yajima, J. Phys. Soc. Japan 44, 948 (1978).

    Article  ADS  Google Scholar 

  8. H. J. Eichler, G. Salje, H. Stahl, J. Appl. Phys. 44, 5383 (1973); H. J. Eichler, J. Knof, Appl. Phys. 13, 209 (1977).

    Article  ADS  Google Scholar 

  9. D. Pohl, V. Irniger, Verhandl. DPG (VI) 13, 311 (1978).

    Google Scholar 

  10. D. Pohl, S. E. Schwarz, V. Irniger, Phys. Rev. Lett. 31, 32 (1973).

    Article  ADS  Google Scholar 

  11. H. J. Eichler, H. Stahl, Opt. Comm. 6, 239 (1973), J. Appl. Phys. 44, 3439 (1973).

    Article  ADS  Google Scholar 

  12. G. Cachier, Appl. Phys. Lett. 17, 419 (1970).

    Article  ADS  Google Scholar 

  13. D. Pohl, V. Irniger, Phys. Rev. Lett. 36, 480 (1976).

    Article  ADS  Google Scholar 

  14. F. V. Bunkin, V. M. Kommissarov, Sov. Phys. Acoust. 19, 203 (1973).

    Google Scholar 

  15. J. P. Woerdman, Philips Res. Repts. Suppl. No. 7 (1971); J. P. Woerdman, Opt. Comm. 2, 212 (1970).

    Google Scholar 

  16. S. G. Odulov, I. I. Peshko, M. S. Soskin, A. I. Khizhnjak, Ukr. Fiz. Jh. 21, 1869 (1976).

    ADS  Google Scholar 

  17. T. A. Wiggins, A. Salik, Appl. Phys. Lett. 25, 438 (1974), R. M. Herman, C. L. Chin, E. Young, Appl. Opt. 17, 520 (1978); T. A. Wiggins, J. A. Bellay, A. H. Carrieri, Appl. Opt. 17, 526 (1978).

    Article  ADS  Google Scholar 

  18. Ch. J. Kennedy et al., Phys. Rev. Lett. 32, 419 (1974); C. V. Shank, D. H. Auston, Phys. Rev. Lett. 34, 479 (1975).

    Article  ADS  Google Scholar 

  19. D. R. Dean, R. J. Collins, J. Appl. Phys. 44, 5455 (1973).

    Article  ADS  Google Scholar 

  20. A. A. Borshch, M. S. Brodin, V. V. Ovchar, S. G. Odulov, M. S. Soskin, JETP Lett. 18, 397 (1973).

    ADS  Google Scholar 

  21. S. G. Odulov, E. N. Sal'kova, L. G. Sukhoverkhova, N. M. Krokvets, G. S. Pekar, M. K. Sheinman, Ukr. Fiz. Zh. 21, 1720 (1976).

    Google Scholar 

  22. K. Jarasiunas, J. Vaitkus, phys. stat. sol. (a) 23, K 19 (1974).

    Article  ADS  Google Scholar 

  23. R. Baltrameyunas, Yu. Vaitkus, K. Yarashyunas, Sov. Phys. Semicond. 10, 572 (1976).

    Google Scholar 

  24. P. A. Apanasevich, A. A. Afanas'ev, Sov. Phys. Solid State 18, 570 (1976).

    ADS  Google Scholar 

  25. M. A. Cutter, R. Y. Key, V. I. Little, Appl. Opt. 13, 1399 (1974), Appl. Opt. 15, 2954 (1976).

    Article  ADS  Google Scholar 

  26. F. Rondelez, H. Hervet, W. Urbach, Chem. Phys. Lett. 53, 138 (1978).

    Article  ADS  Google Scholar 

  27. H. Hervet, W. Urbach, F. Rondelez, J. Chem. Phys. to be published May 1978.

    Google Scholar 

  28. B. P. Stoicheff, Phys. Lett. 7, 186 (1963).

    Article  ADS  Google Scholar 

  29. M. D. Levenson, Physics Today 3, 44 (1977), W. M. Tolles, J. W. Nibler, R. McDonald, A. B. Harvey, Appl. Spectr. 31, 253 (1977).

    Article  Google Scholar 

  30. Holographic gratings in LiNbO3 and similar materials are also produced by a spatial modulation of optically excited free carriers. The decay of these gratings is given by the dielectric relaxation time τe=∈∈0/σ where ε is the relative dielectric constant and σ the conductivity. The time τe and not the ambipolar diffusion time τD is used because a space density is set up by a photovoltaic effect (D. von der Linde, A. M. Glass, Appl. Phys. 8, 85 (1975)).

    Article  ADS  Google Scholar 

  31. S. M. Jensen, R. W. Hellwarth, Appl. Phys. Lett. 32, 166 (1978).

    Article  ADS  Google Scholar 

  32. The fact that I0, I1>exp (−2 Δαd) is possible seems surprising but is known as „anomalous transmission” from the dynamical theory of electron diffraction and as „Borrmann effect” in x-ray diffraction (W. W. Albrecht, H. Niedrig, J. Appl. Phys. 39, 3166 (1968)).

    Article  ADS  Google Scholar 

  33. The formulas in Fig. 9 and the condition for Bragg diffraction in Fig. 3 are valid stictly only for static gratings. For dynamic gratings with time dependent Δα and Δn the corresponding expressions may differ considerably (V. G. Sidorovitch, D. I. Stasielko, Sov. Phys. Techn. Phys. 19, 361 (1974); R. Magnusson, T. Gaylord, J. Appl. Phys. 47, 190 (1975)). This may be important especially in self-diffraction experiments where the light inducing the grating is simultaneously diffracted.

    ADS  Google Scholar 

  34. W. Kaiser, M. Maier, Laser Handbook (Editor E. O. Schulz-Dubois, North-Holland Publishing Comp.—Amsterdam (1972) Vol. 2, p. 1130; V. L. Vinetskii et al. JETP Lett. 25 (1977) 404; Sov. J. Quantum Electr. 7 (1977) 1270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Treusch

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Eichler, H.J. (1978). Forced light scattering at laser-induced gratings—A method for investigation of optically excited solids. In: Treusch, J. (eds) Festkörperprobleme 18. Advances in Solid State Physics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107784

Download citation

  • DOI: https://doi.org/10.1007/BFb0107784

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08024-2

  • Online ISBN: 978-3-540-75362-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics