Advertisement

Material engineering in optoelectronics

  • Heinz Beneking
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 16)

Abstract

The formation of III–V-and related compounds and their optical and electrical behaviour are dependent on their position in the Periodic System of the elements.

The paper describes the influence of covalent radii and electronegativity on band gap and refractive index. Ternary compounds exhibit stress dependent on lattice mismatch which can be minimized by properly selecting the components or using quaternary compounds. The miscibility and the bandgap behaviour of chalcogenides is shown.

The application is demonstrated by presenting a wide gap bipolar gallium arsenide phototransistor n(GaAlAs)-p (GaAs)-n (GaAs), which exhibits current gain > 2000, and a structure, which is able to effect infrared to visible light conversion (Anti-Stokes-Converter).

Five attached tables demonstrate the state of the arts in light emitters and detectors.

Abbrevations

LPE

liquid phase epitaxy

VPE

vapour phase epitaxy

VE

vacuum evaporation

FE

flash evaporation

EFG

etch defined film fed growth

CVD

chemical vapour deposition

SH

single heterostructure

DH

double heterostructure

LOC

large optical cavity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. R. Kessler, Die optischen Konstanten der Halbleiter, in Festkörperprobleme II, Vieweg-press, Braunschweig 1963, 1–52; O. Madelung, Physics of III–V-compounds, J. Wiley, New York 1964; A. G. Milnes and D. L. Feucht, heterojunctions and Metal-Semiconductor Junctions, Academic press, New York 1972; D. H. Seib and L. W. Aukerman, Photodetectors for the 0.1 to 1.0 μm spectral region, in Advances in Electronics and Electron Physics, Academic press, London 1973, 95–221; J. C. Phillips, Bonds and Bands in Semiconductors, Academic press, New York 1973; Sharman and Purohit, Semiconductor Heterojunctions, Vol. 5, The Science of the Solid State, Pergamon press, Oxford 1974; C. G. Scott and C. E. Reed, Surface Physics of Phosphors and Semiconductors, Academic press, London 1974; A. A. Bergh and P. J. Dean, Light-Emitting Diodes, Clarendon press, Oxford 1976; H. Kressel, J. Electron. Mat. 4 (1975), 1081–1140; T. B. Tang, J. Electron. Mat. 4 (1975), 1229–1247; Vapour Growth and Epitaxy, J. of Crystal Growth, 31. No. 12 (Dec. 1975); Characterization of Epitaxial Semiconductor Films, Thin Solid Films 31 (1976).CrossRefGoogle Scholar
  2. [2]
    Neuberger, III–V-Semiconducting Compounds, Handbook of Electronic Materials, Vol. 2, IFI/Plenum, New York-Washington-London 1971.Google Scholar
  3. [3]
    H. C. Casey Jr., D. D. Sell and M. B. Panish, Appl. Phys. Lett. 24 (1974). 63–65.CrossRefADSGoogle Scholar
  4. [4]
    L. Pauling, The nature of the chemical bond, 7. Ed., Cornell University Press 1972, Ithaca, N.Y.Google Scholar
  5. [5]
    C. A. Coulson, L. B. Redei and D. Stocker, Proc. Soc. (London) A270 (1962) 357.ADSCrossRefGoogle Scholar
  6. [6]
    T. Sugano, Annual Research Review 11 (1975), 33–34, Tokyo University.Google Scholar
  7. [7]
    e.g. R. Glocker, Materialprüfung mit Röontgenstrahlen, 4. Ed., Springer press, Berlin/ Göttingen/Heidelberg (1958).Google Scholar
  8. [8]
    W. R. Hitchens, N. Holonyak, Jr., P. D. Wright and J. J. Coleman, Appl. Phys. Lett. 27 (1975), 245–247.CrossRefADSGoogle Scholar
  9. [9]
    M. Ettenberg and R. J. Paff, J. Appl. Phys. 41 (1970), 3926–3927.CrossRefADSGoogle Scholar
  10. [10]
    H. Welker, Zeitschrift für Naturforschung 7a (1952), 744–749.ADSGoogle Scholar
  11. [11]
    H. Beneking, N. Grote, P. Mischel and G. Schul, Inst. of Phys. Conference Series 24 (1975), 113–120.Google Scholar
  12. [12]
    H. Maier, Herstellung und Untersuchung von ionenimplantierten IV–VI-Halbleiter-Mischkristallen für Infrarotdetektoren und Halbleiterlaser. Forschungsbericht T75-48, Bundesministerium für Forschung und Technologie, Bonn 1975.Google Scholar
  13. [13]
    H. Beneking, G. Schul, P. Mischel and A. Gattung, Electronics Letters 10 (1974), 346–347.CrossRefGoogle Scholar

References for Table 1

  1. [1]
    D. Huber and W. Gramann, Inst. Phys. Conf. Ser. Nr. 24 (1975), 223.Google Scholar
  2. [2]
    H. Kressel et al., Appl. Phys. Lett. 28 (1976), 157.CrossRefADSGoogle Scholar
  3. [3]
    S. C. Tsaur, A. C. Milnes and D. L. Feucht, Inst. Phys. Conf. Ser. No. 17 (1972), 150.Google Scholar
  4. [4]
    P. Leitz et al., Proc. of the Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions, 1971, Vol. II.Google Scholar
  5. [5]
    S. Wagner and J. L. Shay, Appl. Phys. Lett. 27 (1975), 229.CrossRefADSGoogle Scholar
  6. [6]
    J. Lebrun, Proc. of the Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions, 1971, Vol. II.Google Scholar
  7. [7]
    H. Ohimura and R. Kondo, Jap. Journ. Appl. Phys. 9 (1970), 274.CrossRefADSGoogle Scholar
  8. [8]
    W. D. Johnsdong, Jr. and W. M. Callahansen, Appl. Phys. Lett. 28 (1976), 157.CrossRefADSGoogle Scholar
  9. [9]
    M. J. Woodall and H. J. Hovel, Appl. Phys. Lett. 21 (1972), 379.CrossRefADSGoogle Scholar
  10. [10]
    H. J. Hovel and M. J. Woodall, Journ. Electrochem. Soc. 120 (1973), 1246.CrossRefGoogle Scholar
  11. [11]
    W. A. Anderson et al., Journ. Appl. Phys. 45 (1974), 3913.CrossRefADSGoogle Scholar
  12. [12]
    R. J. Stirn and Y. C. M. Yeh, Appl. Phys. Lett. 27 (1975), 95.CrossRefADSGoogle Scholar
  13. [13]
    J. L. Shay and S. Wagner, Appl. Phys. Lett. 27 (1975), 89.CrossRefADSGoogle Scholar
  14. [14]
    A. Fahrenbruch et al., Appl. Phys. Lett. 25 (1974), 605.CrossRefADSGoogle Scholar
  15. [15]
    P. Vohl et al., IEEE Transactions ED-14 (1967), 26.CrossRefGoogle Scholar

References for Table 2

  1. [1]
    V. M. Busov et al., Sov. Phys. Semiconductors 8 (1975), 1221–1223.Google Scholar
  2. [2]
    Zh. I. Alferov et al., Sov. Phys. Semiconductors 9 (1975), 837.Google Scholar
  3. [3]
    C. J. Nuese et al., Appl. Phys. Lett. 17 (1970), 90–92.CrossRefADSGoogle Scholar
  4. [4]
    R. H. Saul, J. Amstrong and W. H. Hackett, Appl. Phys. Lett. 15 (1969), 229–231.CrossRefADSGoogle Scholar
  5. [5]
    O. G. Corimer, P. D. Dapkus and W. H. Jackitt, J. Electrochem. Soc. 122 (1975), 407–412.CrossRefGoogle Scholar
  6. [6]
    B. W. Wessels, J. Electrochem. Soc. 122 (1975), 402–406.CrossRefGoogle Scholar
  7. [7]
    A. E. Widmer, R. Fehlmann and H. P. Kleinknecht, paper presented at 5th ESSDERC 8–12, Sept. 1975, Grenoble, France.Google Scholar
  8. [8]
    R. N. Bhargava and C. Michel, Journ. Electr. Mat. 2 (1973), 282–295.Google Scholar
  9. [9]
    from: C. J. Nuese, H. Kressel and I. Ladany, IEEE Spectrum May 1972, 36.Google Scholar
  10. [10]
    W. O. Groves, A. H. Herzog and M. G. Gaford, Appl. Phys. Lett. 19 (1971), 184–186.CrossRefADSGoogle Scholar
  11. [11]
    H. Beneking and N. Grote (to be published).Google Scholar
  12. [12]
    J. Shay, K. J. Bachmann and E. Buehler, Appl. Phys. Lett 24 (1974), 192–194.CrossRefADSGoogle Scholar
  13. [13]
    H. Beneking, N. Grote, P. Mischel and G. Schul, 5th Int. Symp. on Gallium Arsenide and Related Compounds, Deauville 1974, Conf. Ser. No. 24, 113–120.Google Scholar
  14. [14]
    C. J. Nuese, A. G. Sigai, M. S. Abrahams and J. J. Gannon, J. Electrochem. Soc. 120 (1973), 956–965.CrossRefGoogle Scholar
  15. [15]
    N. Esnia, N. V. Jotova and D. N. Nasledov, Sov. Phys. Semiconductors 5 (1971), 1406.Google Scholar
  16. [16]
    R. E. Nahory, M. A. Pollack and J. C. De Winter, Appl. Phys. Lett. 25 (1974), 146–148.CrossRefADSGoogle Scholar
  17. [17]
    L. M. Dolginov et al., Sov. Phys. Semiconductors 9 (1975), 871.Google Scholar
  18. [18]
    V. V. Evstropov et al., Sov. Phys. Semiconductors 9 (1975), 312–314.Google Scholar
  19. [19]
    L. B. Gaisniskaya et al, Sov. Phys. Semiconductors 9 (1975), 312–314.Google Scholar
  20. [20]
    J. I. Pankove, Phys. Rev. Lett. 34 (1975), 809–812.CrossRefADSGoogle Scholar
  21. [21]
    Y. Morimoto, Japan J. Appl. Phys. 13 (1974), 1307–1308.CrossRefADSGoogle Scholar
  22. [22]
    R. M. Potter and J. M. Blanck, A. Addamiano, J. Appl. Phys. 40 (1969), 2253–2257.CrossRefADSGoogle Scholar
  23. [23]
    V. M. Grugev et al., Sov. Phys. Semiconductors 9 (1973), 820–822.Google Scholar

References for Table 3

  1. [1]
    H. Katayana, S. Oda and H. Kukimoto, Appl. Phys. Lett. 27 (1975), 697–699.CrossRefADSGoogle Scholar
  2. [2]
    Y. S. Park, C. R. Gessner and B. K. Skin, Appl. Phys. Lett. 2 (1975), 567–569.Google Scholar
  3. [3]
    Y. S. Park and B. K. Skin, J. Appl. Phys. 45 (1974), 1444–1446.CrossRefADSGoogle Scholar
  4. [4]
    M. E. Özsan and J. Woods, Appl. Phys. Lett. 25 (1974), 489–491.CrossRefADSGoogle Scholar
  5. [5]
    J. P. Donnelly, A. G. Foyt, W. T. Lindley and G. W. Eseler, Sol.-State Electr. 13 (1970), 755–758.CrossRefADSGoogle Scholar
  6. [6]
    S. Fujita, S. Arai, F. Itoh and T. Skaguchi, J. Appl. Phys. 46 (1975), 3070–3075.CrossRefADSGoogle Scholar
  7. [7]
    S. Aven, Appl. Phys. Lett. 7 (1965), 146–148.CrossRefADSGoogle Scholar
  8. [8]
    G. Mandel and F. F. Morehead, Appl. Phy. Lett. 4 (1964), 143–145.CrossRefADSGoogle Scholar
  9. [9]
    A. Kanamori, T. Ota and K. Takahashi, J. Electrochem. Soc. 122 (1975), 1117–1122.CrossRefGoogle Scholar
  10. [10]
    F. F. Morehead and G. Mandel, Appl. Phys. Lett. 5 (1964), 53–54.CrossRefADSGoogle Scholar
  11. [11]
    T. Shitaya, T. Ishida and H. Sata, Appl. Phys. Lett. 21 (1972), 523–524.CrossRefADSGoogle Scholar
  12. [12]
    Y. Kokubun, T. Kalryama, H. Watanabe and M. Wada, Jap. J. Appl. Phys. 14 (1975), 1403–1404.CrossRefADSGoogle Scholar
  13. [13]
    T. Ota, K. Kobayashi and K. Takahashi, J. Appl. Phys. 45 (1974), 1750–1755.CrossRefADSGoogle Scholar
  14. [14]
    Y. A. Fedotov, V. Supalov, N. P. Semenyuk, A. Vanyukov and N. M. Kondaurov, Sov. Phys. Semiconductors 5 (1971), 343–345.Google Scholar
  15. [15]
    H. Holloway, W. H. Weber, E. M. Logothetis, A. J. Varga and K. F. Young, Appl. Phys. Lett. 21 (1972), 5–6.CrossRefADSGoogle Scholar

References for Table 4

  1. [1]
    from: RCA-Electro-Optics Handbook, Harrison, N.J. 1968, 10-3.Google Scholar
  2. [2]
    zh. I. Alferov et al., Sov. Phys. Semicond. 3 (1970), 1373–1376.Google Scholar
  3. [3]
    A. G. Foyt, W. T. Lindley and J. P. Donnelly, Appl. Phys. Lett. 16 (1970), 335–337.CrossRefADSGoogle Scholar
  4. [4]
    B. V. Tsarenkov, Y. A. Goldberg, G. V. Gusev and V. I. Ogurtsov, Sov. Phys. Semicond. 8 (1974), 264–265.Google Scholar
  5. [5]
    G. E. Stillman, C. M. Wolfe, A. G. Foyt and W. T. Lindley, Appl. Phys. Lett. 24 (1974), 8–10.CrossRefADSGoogle Scholar
  6. [6]
    J. K. Hohnke and H. Holloway, Appl. Phys. Lett. 24 (1974), 633–635.CrossRefADSGoogle Scholar
  7. [7]
    J. P. Donnelly, T. C. Harman, A. G. Foyt and W. T. Lindley, Solid State Electron. 26 (1973), 309.Google Scholar
  8. [8]
    J. P. Donnelly and H. Holloway, Appl. Phys. Lett. 13 (1973), 682–683.CrossRefADSGoogle Scholar
  9. [9]
    J. P. Donnelly, T. C. Harman and A. G. Foyt, Appl. Phys. Lett. 18 (1971), 259.CrossRefADSGoogle Scholar
  10. [10]
    A. J. Strauß, Phys. Rev. 157 (1967), 608.CrossRefADSGoogle Scholar
  11. [11]
    H. W. Rolls and D. V. Eddolts, Infrared Phys. 13 (1973), 143.CrossRefADSGoogle Scholar
  12. [12]
    J. P. Donnelly, A. R. Calawa, T. C. Harman, A. G. Foyt and W. T. Lindley, Solid-State Electron. 15 (1972), 403.CrossRefADSGoogle Scholar
  13. [13]
    G. Fiorito, G. Gasparrini and F. Svelto, Appl. Phys. Lett. 23 (1973), 448–449.CrossRefADSGoogle Scholar
  14. [14]
    J. L. Shay, K. J. Bachmann, E. Buehler and J. H. Wernick, Appl. Phys. Lett. 23 (1973), 226–228.CrossRefADSGoogle Scholar
  15. [15]
    S. Wagner, J. L. Shay and P. Migliorato, Appl. Phys. Lett. 25 (1974), 434–435.CrossRefADSGoogle Scholar

References for Table 5

  1. [1]
    H. Kressel, J. Electron. Mat. 4 (1975), 1081–1140.CrossRefADSGoogle Scholar
  1. [2]
    W. R. Hitchens et al., Appl. Phys. Lett. 27 (1975), 245–247.CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1976

Authors and Affiliations

  • Heinz Beneking
    • 1
  1. 1.Institut für Halbleitertechnik der RWTH AachenAachenGermany

Personalised recommendations