Boundary and interface conditions of transport equations for device simulation

  • Dietmar Schroeder
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 36)

Abstract

For the simulation of semiconductor devices, models of the physical transport processes at the interfaces between different materials (semiconductors, metals, insulators) must be available. Usually, these models are formulated as boundary or interface conditions for the transport equations. In this paper, the inflow moments method is introduced, which allows to systematically derive such models from basic principles of interface electron transport. A review of a wide variety of models for semiconductor-semiconductor-, semiconductor-metal-, and semiconductor-insulator-interfaces is presented; the models are classified according to the general framework and discussed in the context of device simulation. In addition, a new model for hot electrons at an ohmic contact is included.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    D. Schroeder, Modelling of interface carrier transport for device simulation, Springer, Wien, 1994.MATHGoogle Scholar
  2. [2]
    C. Jacoboni and P. Lugli, The Monte Carlo method for semiconductor device simulation, Computational Microelectronics, Springer, Wien, 1989.Google Scholar
  3. [3]
    M. Lundstrom, Fundamentals of carrier transport., vol. X of Modular series on solid state devices, Addison-Wesley, Reading, Mass., 1990.Google Scholar
  4. [4]
    D. Schroeder, “The inflow moments method for the description of electron transport at material interfaces”, J. Appl. Phys., vol. 72, pp. 964–970, 1992.CrossRefADSGoogle Scholar
  5. [5]
    G. Lautz, Elektromagnetische Felder, Teubner, Stuttgart, 1985.Google Scholar
  6. [6]
    G. Lehner, Elektromagnetische Felder für Ingenieure und Physiker, Springer, Berlin, 1990.Google Scholar
  7. [7]
    G. Margaritondo and P. Perfetti, “The problem of heterojunction band discontinuities”, in F. Capasso and G. Margaritondo, editors, Heterojunction band discontinuities, pp. 59–114. North-Holland, Amsterdam, 1987.Google Scholar
  8. [8]
    S.M. Sze, Physics of semiconductor devices, John Wiley & Sons, New York, 1981.Google Scholar
  9. [9]
    J. Tersoff, “The theory of heterojunction band lineups”, in F. Capasso and G. Margaritondo, editors, Heterojunction band discontinuities, pp. 3–57, North-Holland, Amsterdam, 1987.Google Scholar
  10. [10]
    J. Tersoff, “Theory of semiconductor heterojunctions: The role of quantum dipoles”, Phys. Rev. B, vol. 30, pp. 4874–4877, 1984.CrossRefADSGoogle Scholar
  11. [11]
    H. Maeda, “Electron transport across a semiconductor heterojunction”, Jap. J. Appl. Phys., vol. 25, pp. 1221–1226, 1986.CrossRefADSGoogle Scholar
  12. [12]
    H. B. Callen, Thermodynamics and an Introduction to Thermostatistics John Wiley & Sons, New York, 1985.MATHGoogle Scholar
  13. [13]
    S.R. Dhariwal and D.R. Mehrotra, “On the recombination and diffusion limited surface recombination velocities”, Solid-State Electron., vol. 31, pp. 1355–1361, 1988.CrossRefADSGoogle Scholar
  14. [14]
    H.G. Unger, W. Schultz, and G. Weinhausen, Elektronische Bauelemente und Netzwerke I, Vieweg, Braunschweig, 1979.Google Scholar
  15. [15]
    E.H. Rhoderick and R.H. Williams, Metal-semiconductor contacts, Clarendon Press, 1988.Google Scholar
  16. [16]
    U. Witkowski and D. Schroeder, “Simulations of the forward behaviour of hybrid schottky/pn-diodes”, in H. Ryssel, editor, Proc. 6th Int. Conf. on Simulation of Semiconductor Devices and Processes, Sept. 6–8, 1995, Erlangen, Germany, Springer, Wien, 1995.Google Scholar
  17. [17]
    W.R. Frensley, “Wigner-function model of a resonant-tunneling semiconductor device”, Phys. Rev. B., vol. 36, pp. 1570–1580, 1987.CrossRefADSGoogle Scholar
  18. [18]
    A. Schenk, “1D analytical model of the metal-semiconductor contact beyond the WKB approximation”, Solid-State Electron., vol. 37, pp. 1633–1648, 1994.CrossRefADSGoogle Scholar
  19. [19]
    S. Selberherr, Analysis and simulation of semiconductor devices, Springer, 1984.Google Scholar
  20. [20]
    G. Baccarani, “Physical models for numerical device simulation”, in W Engl., editor, Process and device modeling, vol. 1 of Advances in CAD for VLSI, pp. 107–158. North-Holland, 1986.Google Scholar
  21. [21]
    A.Y.C. Yu, “Electron tunneling and contact resistance of metal-silicon contact barriers”, Solid-State Electron., vol. 13, pp. 239–247, 1970.CrossRefADSGoogle Scholar
  22. [22]
    W. Schultz, “Zur Theorie der Gleichrichtung am Kontakt Metall-Halbleiter”, Z. Phys., vol. 138, pp. 598–612, 1954.MATHCrossRefADSGoogle Scholar
  23. [23]
    C.R. Crowell and S.M. Sze, “Current transport in metal-semiconductor barriers”, Solid-State Electron., vol. 9, pp. 1035–1048, 1966.CrossRefADSGoogle Scholar
  24. [24]
    J. Adams and T.-W. Tang, “A revised boundary condition for the numerical analysis of Schottky barrier diodes”, IEEE Electron Dev. Lett., vol. EDL-7, pp. 525–527, 1986.CrossRefGoogle Scholar
  25. [25]
    J.O. Nylander, F. Masszi, S. Selberherr, and S. Berg, “Computer simulations of Schottky contacts with a non-constant recombination velocity”, Solid-State Electron., vol. 32, pp. 363–367, 1989.CrossRefADSGoogle Scholar
  26. [26]
    R.B. Darling, “High-field, nonlinear electron transport in lightly doped Schottky-barrier diodes”, Solid-State Electron., vol. 31, pp. 1031–1047, 1988.CrossRefADSGoogle Scholar
  27. [27]
    H. Hjelmgren, “Numerical modeling of hot electrons in n-GaAs Schottky-barrier diodes”, IEEE Trans. Electron Devices, vol. ED-37, pp. 1228–1234, 1990.CrossRefADSGoogle Scholar
  28. [28]
    F.A. Padovani and R. Stratton, “Field and thermionic-field emission in Schottky barriers”, Solid-State Electron., vol. 9, pp. 695–707, 1966.CrossRefADSGoogle Scholar
  29. [29]
    C.R. Crowell and V.L. Rideout, “Normalized thermionic-field (T-F) emission in metalsemiconductor (Schottky) barriers”, Solid-State Electron., vol. 12, pp. 89–105, 1969.CrossRefADSGoogle Scholar
  30. [30]
    K. Shenai, “Very low resistance nonalloyed ohmic contacts to Sn-doped molecular-beam epitaxial GaAs”, IEEE Trans. Electron Devices, vol. ED-34, pp. 1642–1649, 1987.CrossRefGoogle Scholar
  31. [31]
    C.C. McAndrew, E.L. Heasell, and K. Singhal, “A comprehensive transport model for semiconductor device simulation”, Semicond. Sci. Technol., vol. 2, pp. 643–648, 1987.CrossRefADSGoogle Scholar
  32. [32]
    D. Schroeder, “On a consistent formulation of transport equations, distribution function, and mobility”, Semicond. Sci. Technol., vol. 5, pp. 435–437, 1990.CrossRefADSGoogle Scholar
  33. [33]
    N.W. Ashcroft and N.D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, New York, 1976.Google Scholar
  34. [34]
    M.A. Stettler and M.S. Lundstrom, “A detailed investigation of heterojunction transport using a rigorous solution to the Boltzmann equation”, IEEE Trans. Electron Devices, vol. 41, pp. 592–600, 1994.CrossRefADSGoogle Scholar
  35. [35]
    G. Baccarani, “Current transport in Schottky-barrier diodes”, J. Appl. Phys., vol. 47, pp. 4122–4126, 1976.CrossRefADSGoogle Scholar
  36. [36]
    F. Berz, “The Bethe conditions for thermionic emission near an absorbing boundary”, Solid-State Electron., vol. 28, pp. 1007–1013, 1985.CrossRefADSGoogle Scholar
  37. [37]
    C.M. Wu and E.S. Yang, “Carrier transport across heterojunction interfaces”, Solid-State Electron., vol. 22, pp. 241–248, 1979.CrossRefADSGoogle Scholar
  38. [38]
    S. Mottet and J.E. Viallet, “Thermionic emission in heterojunctions”, in Proc. 3rd Int. Conf. on Simulation of Semiconductor Devices and Processes, pp. 97–108, Sept. 26–28, 1988, Bologna.Google Scholar
  39. [39]
    K. Horio and H. Yanai, “Numerical modeling of heterojunctions including the thermionic emission mechanism at the heterojunction interface”, IEEE Trans. Electron Devices, vol. ED-37, pp. 1093–1098, 1990.CrossRefADSGoogle Scholar
  40. [40]
    M. Grupen, K. Hess, and G.H. Song, “Simulation of transport over heterojunctions”, in W. Fichtner and D. Aemmer, editors, Proc. 4th Int. Conf. on Simulation of Semiconductor Devices and Processes, Sept. 12–14, 1991, Zurich. Hartung-Gorre, Konstanz, 1991.Google Scholar
  41. [41]
    G.B. Tait and C.R. Westgate, “Electron transport in rectifying semiconductor alloy ramp structures”, IEEE Trans. Electron Devices, vol. ED-38, pp. 1262–1270, 1991.CrossRefADSGoogle Scholar
  42. [42]
    K. Yang, J. East, and G.I. Haddad, “Numerical modeling of abrupt heterojunction using a thermionic-field emission boundary condition”, Solid-State Electron., vol. 36, pp. 321–330, 1993.CrossRefADSGoogle Scholar
  43. [43]
    A.A. Grinberg, M.S. Shur, R.J. Fischer, and H. Morkoc, “An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors”, IEEE Trans. Electron Devices, vol. ED-31, pp. 1758–1764, 1984.ADSCrossRefGoogle Scholar
  44. [44]
    G. Wachutka, “Consistent treatment of carrier emission and capture kinetics in electrothermal and energy transport models”, in S. Selberher, editor, Proc. 5th Int. Conf. on Simulation of Semiconductor Devices and Processes, Sept. 7–9, 1993, Vienna, Springer, Wien, 1993.Google Scholar
  45. [45]
    H. Hjelmgren and T.-W. Tang “Thermoionic emission in a hydrodynamic model for heterojunction structures”, Solid-State Electron., vol. 37, pp. 1649–1657, 1994.CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1997

Authors and Affiliations

  • Dietmar Schroeder
    • 1
  1. 1.Technical ElectronicsTU Hamburg-HarburgHamburgGermany

Personalised recommendations