Skip to main content

Prozeßsimulation: Stand der Technik

  • Chapter
  • First Online:
Festkörperprobleme 36

Part of the book series: Advances in Solid State Physics ((ASSP,volume 36))

  • 61 Accesses

Zusammenfassung

Die Simulation technologischer Prozesse im Zuge der Fertigung von Halbleiterbauelementen hat sich weltweit als unentbehrliches Hilfsmittel sowohl für die Verbesserung bestehender als auch für die Neuentwicklung von Herstellungsverfahren etabliert. Der Schwerpunkt des Einsatzes liegt vor allem bei hochintegrierten Bauelementen, wo es infolge der stetig fortschreitenden Miniaturisierung unbedingt erforderlich ist, auch bislang als nebensächlich bezeichnete Phänomene möglichst genau zu erfassen. Die in Verwendung befindlichen Programmpakete erlauben im allgemeinen die Simulation sämtlicher wichtiger Prozeßschritte wie Lithographie, Ionenimplantation, Ausheilen (Diffusion), Oxidation, Ätzen und Abscheidung. Derzeit stehen zwar noch Simulatoren im Vordergrund, welche für den überwiegenden Teil der Prozeßschritte nur zwei Ortskoordinaten berücksichtigen—der eindeutige Trend geht allerdings in Richtung dreidimensionaler Behandlung in allen Modulen. Sowohl parallel zu dieser Entwicklung aber auch im Zusammenhang mit der Einbindung der dritten ortsdimension hat nach wie vor die Entwicklung immer feinerer physikalischer Modelle hohe Priorität, um mit dem rasanten Fortschritt in der Technologie Schritt halten zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. D. Antoniadis und I. Moskowitz. Diffusion of Substitutional Impurities in Silicon at Short Oxidation Times: An Insight into Point Defect Kinetics. J. Appl. Phys. 53, 10 (1982), 6788–6796.

    Article  ADS  Google Scholar 

  2. W. Bohmayr, A. Burenkov, J. Lorenz, H. Ryssel, und S. Selberherr. Statistical Accuracy and CPU Time Characteristic of Three Trajectory Split Methods for Monte Carlo Simulation of Ion Implantation. In Simulation of Semiconductor Devices and Processes-SISDEP (Erlangen, 1995), Bd. 6, S. 492–495.

    Google Scholar 

  3. N. Bohr. On the Theory of Decrease of Velocity of Moving Electrified Particles on Passing through Matter. The London, Edinburgh and Dublin Philosophical Journal and Magazine of Science Sixth Series (1913), 10.

    Google Scholar 

  4. G. Bronner und J. Plummer, Gettering of Gold in Silicon: A Tool for Understanding the Properties of Silicon. Appl. Phys. Lett. 61, 12 (1987), 5286–5288.

    Google Scholar 

  5. B. Deal und A. Grove. General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 36, 12 (1965), 3770–3778.

    Article  ADS  Google Scholar 

  6. F. Dill, A. Neureuther, J. Tuttle, und E. Walker, Modeling Projection, Printing of Positive Photoresists. IEEE Trans. Electron Devices ED-22 (1975), 456–464.

    Article  Google Scholar 

  7. A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 4, Folge 17, (1905), 549–560.

    Article  ADS  Google Scholar 

  8. P. Fahey, P. Griffin, und J. Plummer, Point defects and dopant diffusion in silicon. Review of Modern Physics 61, 2 (1989), 289–384.

    Article  ADS  Google Scholar 

  9. R. Fair und J. Tsai. A Quantitative Model for the Diffusion of Phosphorus in Silicon and the Emitter Dip Effect. J. Electrochem. Soc. 124, 7 (1977), 1107–1117.

    Article  Google Scholar 

  10. J. Fehribach, R. Ghez, und G. Oehrlein. Asymptotic estimates of diffusion times for rapid thermal annealing. Appl. Phys. Lett. 46, 4 (1985), 433–435.

    Article  ADS  Google Scholar 

  11. W. Fellner. Computergrafik. Wissenschaftsverlag, 1992.

    Google Scholar 

  12. A. Fick. Über Diffusion. Annalen der Physik und Chemie von Poggendorf 94, 170 (1855), 59–86.

    Article  ADS  Google Scholar 

  13. M. Fujinaga, N. Kotani, T. Kunikiyo, H. Oda, M. Sirahata, und Y. Akasada. Three-Dimensional Topography Simulation Model: Etching and Lithograpy., IEEE Trans. Electron Devices 37, 10 (Okt. 1990), 2183–2192.

    Article  ADS  Google Scholar 

  14. C. Giardina und E. Dougherty. Morphological Methods in Image and Signal Processing. Prentice-Hall, New Jersey, 1988.

    Google Scholar 

  15. M. Giles. Ion Implantation Calculations in Two Dimensions Using the Boltzmann Transport Equation. IEEE Trans. Computer-Aided Design CAD-5, 4 (1986), 679–684.

    Article  MathSciNet  Google Scholar 

  16. E. Guerrero, H. Pötzl, R. Tielert, M. Grasserbauer, und G. Stingeder. Generalized Model for the Clustering of As Dopants in Si., J. Electrochem. Soc. 129, 8 (1982), 1826–1831.

    Article  Google Scholar 

  17. P. Hagouel. X-ray Lithographic Fabrication of Blazed Diffraction Gratings. PhD theses, University of California, Berkeley, 1976.

    Google Scholar 

  18. M. Heinrich, M. Budil, und H. Pötzl. Simulation of Arsenic and Boron Diffusion During Rapid Thermal Annealing in Silicon In ESSDERC 90 (1990), S. 205–208.

    Google Scholar 

  19. J. Helmsen, E. Scheckler, A. Neureuther, und C. Séquin. An Efficient Loop Detection and Removal Algorithm for 3D Surface-Based Lithography Simulation. In Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits (1992), S. 3–8.

    Google Scholar 

  20. W. Henke, D. Mewes, M. Weiss, G. Czech, und R. Schliessl-Hoyler. A Study of Reticle Defects Imaged into Three-Dimensional Developed Profiles of Positive Photoresists Using the SOLID Lithography Simulator. Microelectronic Engineering 14 (1991), 283–297.

    Article  Google Scholar 

  21. Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, und N. Nomura. Three-Dimensional Resist Process Simulator PEACE (Photo and Electron Beam Litography Analyzing Computer Engineering System). IEEE Trans. Computer-Aided Design 10, 6 (Juni 1981), 802–807.

    Article  Google Scholar 

  22. G. Holber. Simulation der Ionenimplantation in ein-, zwei-und dreidimensionalen Strukturen. Dissertation, Technische Universität Wien. 1988.

    Google Scholar 

  23. G. Hobler und H. Pötzl. Electronic stopping of channeled ions in silicon. In Mat. Res. Soc. Symp. Proc. (Pittsburgh, 1993), Bd. 279, S. 165–170.

    Google Scholar 

  24. G. Hobler, A. Simionescu, L. Palmetshofer, C. Tian, und G. Stingeder. Boron channeling implantations in silicon: Modeling of electronic stopping and damage accumulation. J. Appl. Phys. 77, 8 (1995), 3697–3703.

    Article  ADS  Google Scholar 

  25. W. Hofker, H. Werner, D. Oosthoek, und H. D. Grefte. Influence of Annealing on the Concentration profiles of Boron Implantations in Silicon. Applied Physics 2 (1973), 265–278.

    Article  ADS  Google Scholar 

  26. S. Hu. Diffusion in Heavily Doped Semiconductors: Local Charge Neutrality and One-Band Approximations. J. Appl. Phys. 43, 4 (1972), 2015–2018.

    Article  ADS  Google Scholar 

  27. S. Hu. Kinetics of Interstitial Supersaturation During Oxidation of Silicon. Appl. Phys. Lett. 43, 5 (1983), 449–451.

    Article  ADS  Google Scholar 

  28. E. Irene, H. Massoud, und E. Tierney. Silicon Oxidation Studies: Silicon Orientation Effects on Thermal Oxidation. J. Electrochem. Soc. 133, 6 (1986), 1253–1256.

    Article  Google Scholar 

  29. T. Ishizuka. Bulk Image Effects of Photoresist in Three-Dimensional Profile Simulation. Journal for Computation and Mathematics in Electrical and Electronics Engineering 10 (1991), 389–399.

    Article  Google Scholar 

  30. R. Jewett, P. Hagouel, A. Neureuther, und T. V. Duzer. Line-Profile Resist Development Simulation Techniques. Polymer Engineering and Science 17 (1977), 381–384.

    Article  Google Scholar 

  31. D. Kao, J. McVittie, W. Nix, und K. Saraswat. Two-Dimensional Thermal Oxidation of Silicon-II. Modeling Stress Effects in Wet Oxides. IEEE Trans. Electron Devices Ed-35, 1 (1988), 25–37.

    Article  ADS  Google Scholar 

  32. G. Kinchin und R. Pease. The Displacement of Atoms in Solids by Radiation. Rep. Prog. Phys. 18 (1955), 1–51.

    Article  ADS  Google Scholar 

  33. H. Lee und R. Dutton. Two Dimensional Low Concentration Boron Profiles: Modeling and Measurement. IEEE Trans. Electron Devices ED-28, 10 (1981), 1136–1147

    Article  Google Scholar 

  34. E. Leitner, W. Bohmayr, P. Fleischmann, E. Strasser, und S. Selberherr. 3D TCAD at TU Vienna. In 3-Dimensional Process Simulation, J. Lorenz, Ed., Springer Wien-New York, 1995, S. 136–161.

    Google Scholar 

  35. I. Mackintosh. The Diffusion of Phosphorus in Silicon. J. Electrochem. Soc. 109, 5 (1962), 392–401.

    Article  Google Scholar 

  36. H. Massoud, D. Plummer, und E. Irene. Thermal Oxidation of Silicon in Dry Oxygen: Growth-Rate Enhancement in the Thin Regime II. Physical Mechanisms. J. Electrochem. Soc. 132, 11 (1985), 2693–2700.

    Article  Google Scholar 

  37. G. Moliére. Theorie der Streuung schneller geladener Teilchen I. Zeitschrift für Naturforschung 2a (1947), 133–245.

    ADS  Google Scholar 

  38. A. Moniwa, T. Matsuzawa, T. Ito, und H. Sunami. Three-Dimensional Photoresist Imaging Process Simulator for Strong Standing-Wave Effect Environment. IEEE Trans. on CAD of Integrated Circuits and Systems CAD-6 (1987), 431–437.

    Article  Google Scholar 

  39. F. Morin und J. Maita. Electrical Properties of Silicon Containing Arsenic and Boron. Physical Review 96, 1 (1954), 28–35.

    Article  ADS  Google Scholar 

  40. J. Narayan, O. Holland, R. Eby, J. Wortman, V. Ozguz, und G. Rozgonyi Rapid thermal annealing of arsenic and boron-implanted silicon. Appl. Phys. Lett. 43, 10 (1983), 957–959.

    Article  ADS  Google Scholar 

  41. W. Nernst. Zur Kinetik der in Lösung befindlicher Körper. Zeitschrift für Physikalische Chemie, Stöchiometrie und Verwandtschaftslehre 2 (1888), 613–637.

    Google Scholar 

  42. G. Oehrlein, R. Getz, J. Fehribach, E. Gorey, T. Sedgwick, S. Cohen, und V. Deline. Diffusion of Ion-Implanted Boron and Phosphorus During Rapid Thermal Annealing of Silicon. In 13th Int. Conf. on Defects in Semiconductors (1985), L. Kimerling und J.M. Parsey, Jr., Ed., S. 539–546.

    Google Scholar 

  43. W. Oldham, S. Nandgaonkar, A. Neureuther, und M. O’Toole. A General Simulator for VLSI Lithography and Etching Processes: Part I—Application to Projection Lithography. IEEE Trans. Electron Devices ED-26, 4 (1979), 717–722.

    Article  Google Scholar 

  44. M. Orlowski. Impurity and Point Defect Redistribution in the Presence of Crystal Defects. In Proc. Int. Electron Devices Meeting (1990), S. 729–732.

    Google Scholar 

  45. J. Pelka. Three-Dimensional Simulation of Ion-Enhanced Dry-Etch Processes. Microelectronic Engineering 14 (1991), 269–281.

    Article  Google Scholar 

  46. B. Penumalli. Lateral Oxidation and Redistribution of Dopants. In Numerical Analysis of Semiconductor Devices and Integrated Circuits (Dublin, 1981), B. Browne und J. Miller, Ed., Bd. II, Boole Press, S. 264–269.

    Google Scholar 

  47. P. Pichler und R. Dürr. User Guide for ICECREAM 4.2—Simulation Program for Processing Steps in Semiconductor Pruduction. Fraunhofer Arbeitsgruppe für Integrierte Schaltungen, 1990.

    Google Scholar 

  48. C. Rafferty. Simulation of Stress-Dependent Oxidation. In 2nd Int. Symp. on Process Physics and Modeling in Semiconductor Technology (The Electrochemical Society, 1991), S. 756–771.

    Google Scholar 

  49. H. Ryssel, G. Prinke, und K. Hoffmann. Implantation and Diffusion Models for Process Simulation. In VLSI Process and Device Modeling (1983), S. 1–41.

    Google Scholar 

  50. S. A. Schafer und S. Lyon. New Model of the Rapid Initial Oxidation. Appl. Phys. Lett. 47, 2 (1985), 154–156.

    Article  ADS  Google Scholar 

  51. E. Scheckler und A. Neureuther. Models and Algorithms for Three-Dirnensional Topography Simulation with SAMPLE-3D. IEEE Trans. Computer-Aided Design 13, 2 (Feb. 1994), 219.

    Article  Google Scholar 

  52. E. Scheckler, N. Tam, A. Pfau, und A. Neureuther. An Efficient Volume-Removal Algorithm for Practical Three-Dimensional Lithography Simulation with Experimental Verification. IEEE Trans. on CAD of Integrated Circuits 12 (1993), 1345–1356.

    Article  Google Scholar 

  53. T. Sedgwick, R. Kalish, S. Mader, und S. Shatas. Short Time Annealing of As and B Ion Implanted Si Using Tungsten-Halogen Lamps. In Mat. Res. Soc. Proc.: Energy Beam-Solid Interactions and Transient Thermal Processing (1984), J. Fan und N. Johnson, Ed., Bd. 23, S. 293–298.

    Google Scholar 

  54. S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer, Wien New-York, 1984.

    Google Scholar 

  55. A. Simionescu. Monte-Carlo-Simulation der Ionenimplantation in, kristallinem Silizium. Dissertation, Technische Universität Wien, 1995.

    Google Scholar 

  56. A. Simionescu, G. Hobler, und F. Lau. Monte Carlo Simulation of Multiple-Species Ion Implantation and its Application to the Modeling of 0.1 μ PMOS Devices. In Simulation of Semiconductor Devices and Processes—SISDEP (Erlangen, 1995), Bd. 6, S. 484–487.

    Google Scholar 

  57. H. Soleimani. Modelling of High-Dose Ion Implantation-Induced Dopand Transient Diffusion, and Dopant Transient Activation in Silicon (Boron and Arsenic Diffusion. J. Electrochem. Soc.: Solid-State Science and Technology 139, 11 (1992), 3275–3284.

    Google Scholar 

  58. S. Solmi, E. Landi, und F. Baruffaldi. High-Concentration Boron Diffusion in Silicon: Simulation of the Precipitation Phenommena. J. Appl. Phys. 68, 7 (1990), 3250–3258.

    Article  Google Scholar 

  59. A. Sommerfeld. Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms. Zeitschrift für Physik (1932), 283–308.

    Google Scholar 

  60. H. Stippel. Simulation der Ionenimplantation. Dissertation, Technische Universität Wien, 1993.

    Google Scholar 

  61. E. Strasser. Simulation von Topographieprozessen in der Halbleiterfertigung., Dissertation, Technische Universität Wien, 1994.

    Google Scholar 

  62. E. Strasser, G. Schrom, K. Wimmer, und S. Selberherr. Accurate Simulation of Pattern Transfer Processes Using Minkowski Operations. IEEE Trans. Electronics E77-C (1994), 92–97.

    Google Scholar 

  63. E. Strasser, K. Wimmer, und S. Selberherr. A New Method for Simulation of Etching and Deposition Processes. In 1993 Int. Workshop on VLSI Process and Device Modeling (1993), S. 54–55.

    Google Scholar 

  64. P. Sutardja und W. Oldham. Modeling of Stress Effects in Silicon Oxidation. IEEE Trans. Electron Devices 36, 11 (1989), 2415–2420.

    Article  ADS  Google Scholar 

  65. T. Takeda, S. Tazawa, und A. Yoshii. Precise Ion-Implantation Analysis Including Channeling Effects. IEEE Trans. Electron Devices 33, 9 (1986), 1278–1285.

    Article  Google Scholar 

  66. T. Tan und U. Gösele. Point-defects, Diffusion-Processes, and Swirl Defect Formation in Silicon. Applied Physics A 37, 1 (1985), 1–17.

    Article  Google Scholar 

  67. E. Tannenbaum. Detailed Analysis of Thin Phosphorus-Diffused Layers in p-Type Silicon. Solid-State Electron. 2 (1961), 123–132.

    Article  ADS  Google Scholar 

  68. S. Tazawa, F. Leon, G. Anderson, T. Abe, K. Saito, A. Yoshii, und D. Scharfetter. 3-D Topography Simulation of Via Holes Using Generalized Solid Modeling. In Int. Electron Devices Meeting (1992), S. 173–176.

    Google Scholar 

  69. K. Tho, A. Neureuther, und E. Scheckler. Algorithms for Simulation of Three-Dimensional Etching. IEEE Trans. on CAD of Integrated Circuits 13 (1994), 616–624.

    Article  Google Scholar 

  70. M. Thompson. An Introduction to Channeling. In Channeling, D. V. Morgan, Ed. J. Wiley, 1973, S. 1–36.

    Google Scholar 

  71. M. Tsai, F. Morehead, J. Baglin, und A. Michel. Shallow Junctions by High-Dose As Implants in Si: Experiments and Modeling. J. Appl. Phys. 51, 6 (1980), 3230–3235.

    Article  ADS  Google Scholar 

  72. K. Voss und H. Süsse. Praktische Bildverarbeitung Karl Hanser Verlag, München Wien, 1991.

    Google Scholar 

  73. C. Wagner. Über den Zusammenhang zwischen Ionenbeweglichkeit und Diffusionsge-schwindigkeit in festen Salzen. Zeitschrift für Physikalische Chemie B 11 (1931), 139–151.

    Google Scholar 

  74. K. Wimmer. Two-Dimensional Non-Planar Process Simulation. Dissertation, Technische Universität Wien, 1993.

    Google Scholar 

  75. D. Wolters und A. Zegers-VanDuynhoven. Kinetics of Dry Oxidation of Silicon. Applied Surface Science 39, 1 (1989), 81–88.

    Article  ADS  Google Scholar 

  76. J. Ziegler, J. Biersack, und U. Littmark. The Stopping and Range of Ions in Solids. Pergamon Press, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Langer, E., Selberherr, S. (1997). Prozeßsimulation: Stand der Technik. In: Helbig, R. (eds) Festkörperprobleme 36. Advances in Solid State Physics, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107674

Download citation

  • DOI: https://doi.org/10.1007/BFb0107674

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08046-4

  • Online ISBN: 978-3-540-75332-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics