Advertisement

Prozeßsimulation: Stand der Technik

  • Erasmus Langer
  • Siegfried Selberherr
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 36)

Zusammenfassung

Die Simulation technologischer Prozesse im Zuge der Fertigung von Halbleiterbauelementen hat sich weltweit als unentbehrliches Hilfsmittel sowohl für die Verbesserung bestehender als auch für die Neuentwicklung von Herstellungsverfahren etabliert. Der Schwerpunkt des Einsatzes liegt vor allem bei hochintegrierten Bauelementen, wo es infolge der stetig fortschreitenden Miniaturisierung unbedingt erforderlich ist, auch bislang als nebensächlich bezeichnete Phänomene möglichst genau zu erfassen. Die in Verwendung befindlichen Programmpakete erlauben im allgemeinen die Simulation sämtlicher wichtiger Prozeßschritte wie Lithographie, Ionenimplantation, Ausheilen (Diffusion), Oxidation, Ätzen und Abscheidung. Derzeit stehen zwar noch Simulatoren im Vordergrund, welche für den überwiegenden Teil der Prozeßschritte nur zwei Ortskoordinaten berücksichtigen—der eindeutige Trend geht allerdings in Richtung dreidimensionaler Behandlung in allen Modulen. Sowohl parallel zu dieser Entwicklung aber auch im Zusammenhang mit der Einbindung der dritten ortsdimension hat nach wie vor die Entwicklung immer feinerer physikalischer Modelle hohe Priorität, um mit dem rasanten Fortschritt in der Technologie Schritt halten zu können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    D. Antoniadis und I. Moskowitz. Diffusion of Substitutional Impurities in Silicon at Short Oxidation Times: An Insight into Point Defect Kinetics. J. Appl. Phys. 53, 10 (1982), 6788–6796.CrossRefADSGoogle Scholar
  2. [2]
    W. Bohmayr, A. Burenkov, J. Lorenz, H. Ryssel, und S. Selberherr. Statistical Accuracy and CPU Time Characteristic of Three Trajectory Split Methods for Monte Carlo Simulation of Ion Implantation. In Simulation of Semiconductor Devices and Processes-SISDEP (Erlangen, 1995), Bd. 6, S. 492–495.Google Scholar
  3. [3]
    N. Bohr. On the Theory of Decrease of Velocity of Moving Electrified Particles on Passing through Matter. The London, Edinburgh and Dublin Philosophical Journal and Magazine of Science Sixth Series (1913), 10.Google Scholar
  4. [4]
    G. Bronner und J. Plummer, Gettering of Gold in Silicon: A Tool for Understanding the Properties of Silicon. Appl. Phys. Lett. 61, 12 (1987), 5286–5288.Google Scholar
  5. [5]
    B. Deal und A. Grove. General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 36, 12 (1965), 3770–3778.CrossRefADSGoogle Scholar
  6. [6]
    F. Dill, A. Neureuther, J. Tuttle, und E. Walker, Modeling Projection, Printing of Positive Photoresists. IEEE Trans. Electron Devices ED-22 (1975), 456–464.CrossRefGoogle Scholar
  7. [7]
    A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 4, Folge 17, (1905), 549–560.CrossRefADSGoogle Scholar
  8. [8]
    P. Fahey, P. Griffin, und J. Plummer, Point defects and dopant diffusion in silicon. Review of Modern Physics 61, 2 (1989), 289–384.CrossRefADSGoogle Scholar
  9. [9]
    R. Fair und J. Tsai. A Quantitative Model for the Diffusion of Phosphorus in Silicon and the Emitter Dip Effect. J. Electrochem. Soc. 124, 7 (1977), 1107–1117.CrossRefGoogle Scholar
  10. [10]
    J. Fehribach, R. Ghez, und G. Oehrlein. Asymptotic estimates of diffusion times for rapid thermal annealing. Appl. Phys. Lett. 46, 4 (1985), 433–435.CrossRefADSGoogle Scholar
  11. [11]
    W. Fellner. Computergrafik. Wissenschaftsverlag, 1992.Google Scholar
  12. [12]
    A. Fick. Über Diffusion. Annalen der Physik und Chemie von Poggendorf 94, 170 (1855), 59–86.CrossRefADSGoogle Scholar
  13. [13]
    M. Fujinaga, N. Kotani, T. Kunikiyo, H. Oda, M. Sirahata, und Y. Akasada. Three-Dimensional Topography Simulation Model: Etching and Lithograpy., IEEE Trans. Electron Devices 37, 10 (Okt. 1990), 2183–2192.CrossRefADSGoogle Scholar
  14. [14]
    C. Giardina und E. Dougherty. Morphological Methods in Image and Signal Processing. Prentice-Hall, New Jersey, 1988.Google Scholar
  15. [15]
    M. Giles. Ion Implantation Calculations in Two Dimensions Using the Boltzmann Transport Equation. IEEE Trans. Computer-Aided Design CAD-5, 4 (1986), 679–684.CrossRefMathSciNetGoogle Scholar
  16. [16]
    E. Guerrero, H. Pötzl, R. Tielert, M. Grasserbauer, und G. Stingeder. Generalized Model for the Clustering of As Dopants in Si., J. Electrochem. Soc. 129, 8 (1982), 1826–1831.CrossRefGoogle Scholar
  17. [17]
    P. Hagouel. X-ray Lithographic Fabrication of Blazed Diffraction Gratings. PhD theses, University of California, Berkeley, 1976.Google Scholar
  18. [18]
    M. Heinrich, M. Budil, und H. Pötzl. Simulation of Arsenic and Boron Diffusion During Rapid Thermal Annealing in Silicon In ESSDERC 90 (1990), S. 205–208.Google Scholar
  19. [19]
    J. Helmsen, E. Scheckler, A. Neureuther, und C. Séquin. An Efficient Loop Detection and Removal Algorithm for 3D Surface-Based Lithography Simulation. In Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits (1992), S. 3–8.Google Scholar
  20. [20]
    W. Henke, D. Mewes, M. Weiss, G. Czech, und R. Schliessl-Hoyler. A Study of Reticle Defects Imaged into Three-Dimensional Developed Profiles of Positive Photoresists Using the SOLID Lithography Simulator. Microelectronic Engineering 14 (1991), 283–297.CrossRefGoogle Scholar
  21. [21]
    Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, und N. Nomura. Three-Dimensional Resist Process Simulator PEACE (Photo and Electron Beam Litography Analyzing Computer Engineering System). IEEE Trans. Computer-Aided Design 10, 6 (Juni 1981), 802–807.CrossRefGoogle Scholar
  22. [22]
    G. Holber. Simulation der Ionenimplantation in ein-, zwei-und dreidimensionalen Strukturen. Dissertation, Technische Universität Wien. 1988.Google Scholar
  23. [23]
    G. Hobler und H. Pötzl. Electronic stopping of channeled ions in silicon. In Mat. Res. Soc. Symp. Proc. (Pittsburgh, 1993), Bd. 279, S. 165–170.Google Scholar
  24. [24]
    G. Hobler, A. Simionescu, L. Palmetshofer, C. Tian, und G. Stingeder. Boron channeling implantations in silicon: Modeling of electronic stopping and damage accumulation. J. Appl. Phys. 77, 8 (1995), 3697–3703.CrossRefADSGoogle Scholar
  25. [25]
    W. Hofker, H. Werner, D. Oosthoek, und H. D. Grefte. Influence of Annealing on the Concentration profiles of Boron Implantations in Silicon. Applied Physics 2 (1973), 265–278.CrossRefADSGoogle Scholar
  26. [26]
    S. Hu. Diffusion in Heavily Doped Semiconductors: Local Charge Neutrality and One-Band Approximations. J. Appl. Phys. 43, 4 (1972), 2015–2018.CrossRefADSGoogle Scholar
  27. [27]
    S. Hu. Kinetics of Interstitial Supersaturation During Oxidation of Silicon. Appl. Phys. Lett. 43, 5 (1983), 449–451.CrossRefADSGoogle Scholar
  28. [28]
    E. Irene, H. Massoud, und E. Tierney. Silicon Oxidation Studies: Silicon Orientation Effects on Thermal Oxidation. J. Electrochem. Soc. 133, 6 (1986), 1253–1256.CrossRefGoogle Scholar
  29. [29]
    T. Ishizuka. Bulk Image Effects of Photoresist in Three-Dimensional Profile Simulation. Journal for Computation and Mathematics in Electrical and Electronics Engineering 10 (1991), 389–399.CrossRefGoogle Scholar
  30. [30]
    R. Jewett, P. Hagouel, A. Neureuther, und T. V. Duzer. Line-Profile Resist Development Simulation Techniques. Polymer Engineering and Science 17 (1977), 381–384.CrossRefGoogle Scholar
  31. [31]
    D. Kao, J. McVittie, W. Nix, und K. Saraswat. Two-Dimensional Thermal Oxidation of Silicon-II. Modeling Stress Effects in Wet Oxides. IEEE Trans. Electron Devices Ed-35, 1 (1988), 25–37.CrossRefADSGoogle Scholar
  32. [32]
    G. Kinchin und R. Pease. The Displacement of Atoms in Solids by Radiation. Rep. Prog. Phys. 18 (1955), 1–51.CrossRefADSGoogle Scholar
  33. [33]
    H. Lee und R. Dutton. Two Dimensional Low Concentration Boron Profiles: Modeling and Measurement. IEEE Trans. Electron Devices ED-28, 10 (1981), 1136–1147CrossRefGoogle Scholar
  34. [34]
    E. Leitner, W. Bohmayr, P. Fleischmann, E. Strasser, und S. Selberherr. 3D TCAD at TU Vienna. In 3-Dimensional Process Simulation, J. Lorenz, Ed., Springer Wien-New York, 1995, S. 136–161.Google Scholar
  35. [35]
    I. Mackintosh. The Diffusion of Phosphorus in Silicon. J. Electrochem. Soc. 109, 5 (1962), 392–401.CrossRefGoogle Scholar
  36. [36]
    H. Massoud, D. Plummer, und E. Irene. Thermal Oxidation of Silicon in Dry Oxygen: Growth-Rate Enhancement in the Thin Regime II. Physical Mechanisms. J. Electrochem. Soc. 132, 11 (1985), 2693–2700.CrossRefGoogle Scholar
  37. [37]
    G. Moliére. Theorie der Streuung schneller geladener Teilchen I. Zeitschrift für Naturforschung 2a (1947), 133–245.ADSGoogle Scholar
  38. [38]
    A. Moniwa, T. Matsuzawa, T. Ito, und H. Sunami. Three-Dimensional Photoresist Imaging Process Simulator for Strong Standing-Wave Effect Environment. IEEE Trans. on CAD of Integrated Circuits and Systems CAD-6 (1987), 431–437.CrossRefGoogle Scholar
  39. [39]
    F. Morin und J. Maita. Electrical Properties of Silicon Containing Arsenic and Boron. Physical Review 96, 1 (1954), 28–35.CrossRefADSGoogle Scholar
  40. [40]
    J. Narayan, O. Holland, R. Eby, J. Wortman, V. Ozguz, und G. Rozgonyi Rapid thermal annealing of arsenic and boron-implanted silicon. Appl. Phys. Lett. 43, 10 (1983), 957–959.CrossRefADSGoogle Scholar
  41. [41]
    W. Nernst. Zur Kinetik der in Lösung befindlicher Körper. Zeitschrift für Physikalische Chemie, Stöchiometrie und Verwandtschaftslehre 2 (1888), 613–637.Google Scholar
  42. [42]
    G. Oehrlein, R. Getz, J. Fehribach, E. Gorey, T. Sedgwick, S. Cohen, und V. Deline. Diffusion of Ion-Implanted Boron and Phosphorus During Rapid Thermal Annealing of Silicon. In 13th Int. Conf. on Defects in Semiconductors (1985), L. Kimerling und J.M. Parsey, Jr., Ed., S. 539–546.Google Scholar
  43. [43]
    W. Oldham, S. Nandgaonkar, A. Neureuther, und M. O’Toole. A General Simulator for VLSI Lithography and Etching Processes: Part I—Application to Projection Lithography. IEEE Trans. Electron Devices ED-26, 4 (1979), 717–722.CrossRefGoogle Scholar
  44. [44]
    M. Orlowski. Impurity and Point Defect Redistribution in the Presence of Crystal Defects. In Proc. Int. Electron Devices Meeting (1990), S. 729–732.Google Scholar
  45. [45]
    J. Pelka. Three-Dimensional Simulation of Ion-Enhanced Dry-Etch Processes. Microelectronic Engineering 14 (1991), 269–281.CrossRefGoogle Scholar
  46. [46]
    B. Penumalli. Lateral Oxidation and Redistribution of Dopants. In Numerical Analysis of Semiconductor Devices and Integrated Circuits (Dublin, 1981), B. Browne und J. Miller, Ed., Bd. II, Boole Press, S. 264–269.Google Scholar
  47. [47]
    P. Pichler und R. Dürr. User Guide for ICECREAM 4.2—Simulation Program for Processing Steps in Semiconductor Pruduction. Fraunhofer Arbeitsgruppe für Integrierte Schaltungen, 1990.Google Scholar
  48. [48]
    C. Rafferty. Simulation of Stress-Dependent Oxidation. In 2nd Int. Symp. on Process Physics and Modeling in Semiconductor Technology (The Electrochemical Society, 1991), S. 756–771.Google Scholar
  49. [49]
    H. Ryssel, G. Prinke, und K. Hoffmann. Implantation and Diffusion Models for Process Simulation. In VLSI Process and Device Modeling (1983), S. 1–41.Google Scholar
  50. [50]
    S. A. Schafer und S. Lyon. New Model of the Rapid Initial Oxidation. Appl. Phys. Lett. 47, 2 (1985), 154–156.CrossRefADSGoogle Scholar
  51. [51]
    E. Scheckler und A. Neureuther. Models and Algorithms for Three-Dirnensional Topography Simulation with SAMPLE-3D. IEEE Trans. Computer-Aided Design 13, 2 (Feb. 1994), 219.CrossRefGoogle Scholar
  52. [52]
    E. Scheckler, N. Tam, A. Pfau, und A. Neureuther. An Efficient Volume-Removal Algorithm for Practical Three-Dimensional Lithography Simulation with Experimental Verification. IEEE Trans. on CAD of Integrated Circuits 12 (1993), 1345–1356.CrossRefGoogle Scholar
  53. [53]
    T. Sedgwick, R. Kalish, S. Mader, und S. Shatas. Short Time Annealing of As and B Ion Implanted Si Using Tungsten-Halogen Lamps. In Mat. Res. Soc. Proc.: Energy Beam-Solid Interactions and Transient Thermal Processing (1984), J. Fan und N. Johnson, Ed., Bd. 23, S. 293–298.Google Scholar
  54. [54]
    S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer, Wien New-York, 1984.Google Scholar
  55. [55]
    A. Simionescu. Monte-Carlo-Simulation der Ionenimplantation in, kristallinem Silizium. Dissertation, Technische Universität Wien, 1995.Google Scholar
  56. [56]
    A. Simionescu, G. Hobler, und F. Lau. Monte Carlo Simulation of Multiple-Species Ion Implantation and its Application to the Modeling of 0.1 μ PMOS Devices. In Simulation of Semiconductor Devices and Processes—SISDEP (Erlangen, 1995), Bd. 6, S. 484–487.Google Scholar
  57. [57]
    H. Soleimani. Modelling of High-Dose Ion Implantation-Induced Dopand Transient Diffusion, and Dopant Transient Activation in Silicon (Boron and Arsenic Diffusion. J. Electrochem. Soc.: Solid-State Science and Technology 139, 11 (1992), 3275–3284.Google Scholar
  58. [58]
    S. Solmi, E. Landi, und F. Baruffaldi. High-Concentration Boron Diffusion in Silicon: Simulation of the Precipitation Phenommena. J. Appl. Phys. 68, 7 (1990), 3250–3258.CrossRefGoogle Scholar
  59. [59]
    A. Sommerfeld. Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms. Zeitschrift für Physik (1932), 283–308.Google Scholar
  60. [60]
    H. Stippel. Simulation der Ionenimplantation. Dissertation, Technische Universität Wien, 1993.Google Scholar
  61. [61]
    E. Strasser. Simulation von Topographieprozessen in der Halbleiterfertigung., Dissertation, Technische Universität Wien, 1994.Google Scholar
  62. [62]
    E. Strasser, G. Schrom, K. Wimmer, und S. Selberherr. Accurate Simulation of Pattern Transfer Processes Using Minkowski Operations. IEEE Trans. Electronics E77-C (1994), 92–97.Google Scholar
  63. [63]
    E. Strasser, K. Wimmer, und S. Selberherr. A New Method for Simulation of Etching and Deposition Processes. In 1993 Int. Workshop on VLSI Process and Device Modeling (1993), S. 54–55.Google Scholar
  64. [64]
    P. Sutardja und W. Oldham. Modeling of Stress Effects in Silicon Oxidation. IEEE Trans. Electron Devices 36, 11 (1989), 2415–2420.CrossRefADSGoogle Scholar
  65. [65]
    T. Takeda, S. Tazawa, und A. Yoshii. Precise Ion-Implantation Analysis Including Channeling Effects. IEEE Trans. Electron Devices 33, 9 (1986), 1278–1285.CrossRefGoogle Scholar
  66. [66]
    T. Tan und U. Gösele. Point-defects, Diffusion-Processes, and Swirl Defect Formation in Silicon. Applied Physics A 37, 1 (1985), 1–17.CrossRefGoogle Scholar
  67. [67]
    E. Tannenbaum. Detailed Analysis of Thin Phosphorus-Diffused Layers in p-Type Silicon. Solid-State Electron. 2 (1961), 123–132.CrossRefADSGoogle Scholar
  68. [68]
    S. Tazawa, F. Leon, G. Anderson, T. Abe, K. Saito, A. Yoshii, und D. Scharfetter. 3-D Topography Simulation of Via Holes Using Generalized Solid Modeling. In Int. Electron Devices Meeting (1992), S. 173–176.Google Scholar
  69. [69]
    K. Tho, A. Neureuther, und E. Scheckler. Algorithms for Simulation of Three-Dimensional Etching. IEEE Trans. on CAD of Integrated Circuits 13 (1994), 616–624.CrossRefGoogle Scholar
  70. [70]
    M. Thompson. An Introduction to Channeling. In Channeling, D. V. Morgan, Ed. J. Wiley, 1973, S. 1–36.Google Scholar
  71. [71]
    M. Tsai, F. Morehead, J. Baglin, und A. Michel. Shallow Junctions by High-Dose As Implants in Si: Experiments and Modeling. J. Appl. Phys. 51, 6 (1980), 3230–3235.CrossRefADSGoogle Scholar
  72. [72]
    K. Voss und H. Süsse. Praktische Bildverarbeitung Karl Hanser Verlag, München Wien, 1991.Google Scholar
  73. [73]
    C. Wagner. Über den Zusammenhang zwischen Ionenbeweglichkeit und Diffusionsge-schwindigkeit in festen Salzen. Zeitschrift für Physikalische Chemie B 11 (1931), 139–151.Google Scholar
  74. [74]
    K. Wimmer. Two-Dimensional Non-Planar Process Simulation. Dissertation, Technische Universität Wien, 1993.Google Scholar
  75. [75]
    D. Wolters und A. Zegers-VanDuynhoven. Kinetics of Dry Oxidation of Silicon. Applied Surface Science 39, 1 (1989), 81–88.CrossRefADSGoogle Scholar
  76. [76]
    J. Ziegler, J. Biersack, und U. Littmark. The Stopping and Range of Ions in Solids. Pergamon Press, 1985.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1997

Authors and Affiliations

  • Erasmus Langer
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institut für MikroelektronikTechnische Universität WienWienAustria

Personalised recommendations