Advertisement

Optical properties of quantum wires and dots

  • T. L. Reinecke
  • P. A. Knipp
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 36)

Abstract

Recent work on the optical properties of quantum wire and quantum dot systems is discussed, including carrier, phonon and photon states, electronphonon scattering and excitonic effects. In realistic systems the geometry often results in the equations for the elementary excitations being non-separable. Numerical methods for calculating these excitations are discussed with emphasis on “boundary element methods”, which we have recently developed. Electron-LO phonon scattering rates in quantum wires are given based on single particle results for electrons and phonons. Electron- acoustic phonon scattering rates in quantum dots including the effects of coupling to the dot surroundings and of a novel acoustic phonon scattering mechanism are discussed. For the optical transition energies comparisons are made with recent experimental results on a series of lithographically formed quantum wire and quantum dot structures, including deep etched and modulated barrier structures with and without magnetic fields. Exciton binding energies in these structures are calculated variationally and are found to depend on confinement and to be in agreement with experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    M. A. Kastner, Phys. Today 46 (1), 24 (1993).ADSCrossRefGoogle Scholar
  2. [2]
    D. Heitmann and J. P. Kotthaus, Phys. Today 46 (6), 56 (1993).CrossRefGoogle Scholar
  3. [3]
    K. Kash, A. Scherer, J. M. Worlock, H. G. Craighead, and M. C. Tamargo, Appl. Phys. Lett. 49, 1043 (1986); J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 49, 1275 (1986); P. Ils, M. Michel, A. Forchel, I. Gyuro, M. Klenk and E. Zielinski, Appl. Phys. Lett. 64, 496 (1994): E. S. Snow and P. M. Campbell, Appl. Phys. Lett. 64, 1932 (1994).CrossRefADSGoogle Scholar
  4. [4]
    D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaards, and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).CrossRefADSGoogle Scholar
  5. [5]
    J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre and O. Vatel, Appl. Phys. Lett. 64, 196 (1994); E. Kapon, D. W. Hwang, and R. Bhat, Phys. Rev. Lett. 63, 430 (1989).CrossRefADSGoogle Scholar
  6. [6]
    R. J. Tonucci, B. L. Justus, A. J. Campillo, and C. E. Ford, Science 258, 783 (1992).CrossRefADSGoogle Scholar
  7. [7]
    C. B. Murray, C. R. kagan, and M. G. Bawendi, Science 270, 1335 (1995).CrossRefADSGoogle Scholar
  8. [8]
    R. Ruppin and R. Engleman, Rep. Prog. Phys. 33, 149 (1970).CrossRefADSGoogle Scholar
  9. [9]
    M. Kac, Amer. Math. Monthly 73, 1 (1966).CrossRefGoogle Scholar
  10. [10]
    P. A. Maksym and Tapash Chakraborty, Phys. Rev. Lett. 65, 108 (1990); Daniela Pfannkuche and Rolfe R. Gerhardts, Phys. Rev. B 44, 13132 (1991).CrossRefADSGoogle Scholar
  11. [11]
    C. Weisbuch, J. Cryst. Growth 138, 776 (1994).CrossRefADSGoogle Scholar
  12. [12]
    Lin-Wang Wang and Alex Zunger, in Nanocrystalline Semiconductor Materials (Elsevier, 1996), edited by P. V. Kamat and D. Meisel.Google Scholar
  13. [13]
    Arvind Kumer, Surf. Sci. 263, 335 (1992); V. V. Paranjape, SPIE Quantum Well Superlat. Phys. III 1283, 287 (1990).CrossRefADSGoogle Scholar
  14. [14]
    L. R. Ram-Mohan and J. R. Meyer, J. Nonlinear Opt. Phys. and Materials 4, 191 (1995).CrossRefADSGoogle Scholar
  15. [15]
    P. A. Knipp and T. L. Reinecke, Superlatt. and Microstruct. 16, 201 (1994).CrossRefADSGoogle Scholar
  16. [16]
    P. A. Knipp and T. L. Reinecke, Phys. Rev. B, 54, 1880 (1996).CrossRefADSGoogle Scholar
  17. [17]
    P. A. Knipp and T. L. Reinecke, Proceedings of the 23rd International Conference on the Physics of Semiconductors, ed. R. Zimmermann, (in press).Google Scholar
  18. [18]
    Erik Ivar Fredholm, Sur un, nouvelle methode pour la resolution du probleme de Dirichlet (Ofr. Fork. Akad., Stockholm, 1900); George R. C. Tai and Richard Paul Shaw, J. Acoust. Soc. Am. 56, 796 (1974); Yi Yan, SIAM J. Numer. Anal. 31, 477 (1994).Google Scholar
  19. [19]
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Wiley, New York, 1988).Google Scholar
  20. [20]
    M. V. Klein, IEEE J. Quantum Electron. QE-22, 1760 (1986).CrossRefADSGoogle Scholar
  21. [21]
    James J., Licari and Roger Evrard Phys. Rev. B 15, 2254 (1977); E. P. Pokatilov and S. I. Beril, Phys. Status Solidi B 110, K75 (1982); 118, 567 (1983).CrossRefADSGoogle Scholar
  22. [22]
    M. Cardona, in Lectures on Surface Science, edited by G. R. Castro and M. Cardona (Springer-Verlag, Berlin, 1987), pp. 2–27; A. K. Sood, J. Menéndez, M. Cardona and K. Ploog, Phys. Rev. Lett. 54, 2111 (1985).Google Scholar
  23. [23]
    P. A. Knipp and T. L. Reinecke, Phys. Rev. B 48, 12338 (1993).CrossRefADSGoogle Scholar
  24. [24]
    R. Mickevicius, V. V. Mitin, K. W. Kim, and M. A. Stroscio, Superlatt. Microstr. 11, 277 (1992); Michael A. Stroscio, K. W. Kim, Michael A. Littlejohn and Hsuhung Chuang, Phys. Rev. B 42, 1488, (1990)CrossRefADSGoogle Scholar
  25. [25]
    P. A. Knipp and T. L. Reinecke, Phys. Rev. B 45, 9091 (1992).CrossRefADSGoogle Scholar
  26. [26]
    B. K. Ridley, Phys. Rev. B 39, 5282 (1989).CrossRefADSGoogle Scholar
  27. [27]
    S. Rudin and T. L. Reinecke, Phys. Rev. B 41, 7713 (1990); 43, 9298 (E) (1991).CrossRefADSGoogle Scholar
  28. [28]
    E. Roca, C. Trallero-Giner, and M. Cardona, Phys. Rev. B 49, 13704 (1994).CrossRefADSGoogle Scholar
  29. [29]
    Kun Huang and Bangfen Zhu, Phys. Rev. B 38, 13377 (1988); Phys. Rev. B 38, 2183 (1988).CrossRefADSGoogle Scholar
  30. [30]
    H. Rücker, E. Molinari and P. Lugli, Phys. Rev. B 44, 3463 (1991).CrossRefADSGoogle Scholar
  31. [31]
    Continuum approaches which satisfy constraints on the displacement u and not on the electrostatic potential ϕ have also been introduced[26]. In addition to not satisfying maxwell’s equations, it has been shown that these modes do not agree, well with lattice dynamics [30] H. Rückler, E. Molinari and P. Lugli, Phys. Rev. B 44, 3463 (1991) results and that they give inappropriate scattering rates [27, 30]. S. Ruddin and T. L. Reinecke, Phys. Rev. B 41, 7713 (1990); 43, 9298 (E) (1991). H. Rücker, E. Molinari and P. Lugli., Phys. Rev. B 44 3453 (1991).CrossRefADSGoogle Scholar
  32. [32]
    P. A. Knipp and, T. L. Reinecke, Phys. Rev. B, 48, R5700 (1993).CrossRefADSGoogle Scholar
  33. [33]
    P. A. Knipp and T. L. Reinecke, Phys. Rev. B, 48, 18037 (1993).CrossRefADSGoogle Scholar
  34. [34]
    B. Jusserand and M. Cardona, in Light Scattering in Solids V, ed by M. Cardona and G. Güntherodt (Springer-Verlag, Berlin, 1989).Google Scholar
  35. [35]
    M. P. Chamberlain M. Cardona, B. K. Ridley, Phys. Rev. B 48, 14356 (1993).CrossRefADSGoogle Scholar
  36. [36]
    E. Richter and D. Strauch, Solid State Commun. 64, 867 (1987).CrossRefADSGoogle Scholar
  37. [37]
    T. L. Reinecke, in Phonons in Semiconductor Nanostructures, edited by J. P. LeBurton et al (Kluwer Academic Press, the Netherlands, 1993) p. 353.Google Scholar
  38. [38]
    P. A. Knipp and T. L. Reinecke, Solid-State Electron. 37, 1105 (1994).CrossRefADSGoogle Scholar
  39. [39]
    K. W. Kim, M. A. Stroscio, A. Bhatt, R. Mickevicius, and V. V. Mitin., J. Appl. Phys. 70, 319 (1991).CrossRefADSGoogle Scholar
  40. [40]
    T. Itoh, M. Nishijima, A. I. Ekimov, C. Gordon, Al. L. Efros, and M. Rosen, Phys. Rev. Lett. 74, 1645 (1995).CrossRefADSGoogle Scholar
  41. [41]
    P. A. Knipp, T. L. Reinecke, A. Lorke, M. Fricke, J. P. Kotthaus and P. M. Petroff (unpublished).Google Scholar
  42. [42]
    P. A. Knipp, Stephen W., Pierson and T. L. Reinecke, Surf. Sci. 361–362, 696 (1996).Google Scholar
  43. [43]
    J. Monecke, W. Cordts, G. Irmer, B. H. Bairamov, and V. V. Toporov, Phys. Status Solidi B 138, 685 (1986).CrossRefADSGoogle Scholar
  44. [44]
    P.J. Dean, D.D. Manchon, Jr., and J.J. Hopfield, Phys. Rev. Lett. 25, 1027 (1970); Stephen W. Pierson, T. L. Reinecke, and S. Rudin, Phys. Rev. B 51, 10817 (1995).CrossRefADSGoogle Scholar
  45. [45]
    D. S. Chuu, C. M. Dai, W. F. Hsieh, and C. T. Tsai, J. Appl. Phys. 69, 8402 (1991); J. F. Scott and T. C. Damen, Opt. Commun. 5 410 (1972)CrossRefADSGoogle Scholar
  46. [46]
    P. A. Knipp and T. L. Reinecke, Phys. Rev. B 46, 10310 (1992)CrossRefADSGoogle Scholar
  47. [47]
    P. A. Knipp and T. L. Reinecke, Proceedings of the 22nd International Conference on the Physics of Semiconductors, edited by D. J. Lockwood (World Scientific, Singapore, 1995), p. 1927.Google Scholar
  48. [48]
    U. Bockelmann and G. Bastard, Phys. Rev. B. 42, 8947 (1990).CrossRefADSGoogle Scholar
  49. [49]
    H. Benisty, C. M. Sotomayor-Torrès and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).CrossRefADSGoogle Scholar
  50. [50]
    P. A. Knipp and T. L. Reinecke, Phys. Rev. B 52, 5923 (1995).CrossRefADSGoogle Scholar
  51. [51]
    A. M. Marvin, V. Bortolani and F. Nizzoli, J. Phys. C 13, 299 (1980).CrossRefADSGoogle Scholar
  52. [52]
    Ch. Gréus, L. Butov, F. Daiminger, A. Forchel, P. A. Knipp, and T. L. Reinecke, Phys. Rev. B 47, R7626 (1993).CrossRefADSGoogle Scholar
  53. [53]
    Ch. Gréus, R. Spiegel, P. A. Knipp, T. L. Reinecke, F. Faller, and A. Forchel, Phys. Rev. B 49, R5753 (1994).CrossRefADSGoogle Scholar
  54. [54]
    P. A. Knipp and T. L. Reinecke, J. Vac. Sci. and Technol. B 11 1667 (1993).CrossRefADSGoogle Scholar
  55. [55]
    M. Bayer, A. Forchel, I. E. Istkevich, T. L. Reinecke, P. A. Knipp, Ch. Gréus, R. Spiegel, and F. Faller, Phys. Rev. B 49, R14782 (1994).CrossRefADSGoogle Scholar
  56. [56]
    M. Bayer, P. Ils, M. Michel, A. Forchel, T.L. Reinecke, and P. A. Knipp, Phys. Rev. B 53, 4668 (1996).CrossRefADSGoogle Scholar
  57. [57]
    M. Bayer, A. Schmidt, A. Forchel, F. Faller, T. L. Reinecke, P. A. Knipp, A. A. Dremin and V. D. Kulakovskii, Phys. Rev. Lett. 74, 3439 (1995).CrossRefADSGoogle Scholar
  58. [58]
    A. Forchel, M. Bayer, T. L. Reinecke, A. Schmidt, V. D. Kulakovskii, and P. A. Knipp, Proceedings of the 22nd International Conference on the Physics of Semiconductors, edited by D. J. Lockwood (World Scientific, Singapore, 1995), p. 1859.Google Scholar
  59. [59]
    M. Bayer, O. Schilling, A. Forchel, T. L. Reinecke, P. A. Knipp, Ph. Pagnod-Rossiaux and L. Goldstein, Phys. Rev. B 53, 15810 (1996).CrossRefADSGoogle Scholar
  60. [60]
    M. Bayer, A. A. Dremin, V. D. Kulakovskii, A. Forchel, F. Faller, P. A. Knipp and T. L. Reinecke, Phys. Rev. B 52, 14728 (1995).CrossRefADSGoogle Scholar
  61. [61]
    F. Kieseling, W. Braun, K. H. Wang, A. Forchel, P. A. Knipp, T. L. Reinecke, Ph. Pagnod-Rossiaux, and L. Goldstein, Phys. Rev. B 52, R11595 (1995).CrossRefADSGoogle Scholar
  62. [62]
    M. Bayer, S. Walck, T. L. Reinecke, and A. Forchel Phys. Rev. B (in press).Google Scholar
  63. [63]
    G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, Phys. Rev. B 26, 1974 (1982).CrossRefADSGoogle Scholar
  64. [64]
    M. Bayer, S. Walck, T. L. Reinecke, and A. Forchel (unpublished).Google Scholar
  65. [65]
    S. Sridhar and A. Kudrolli, Phys. Rev. Lett. 72, 2175 (1994).CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1997

Authors and Affiliations

  • T. L. Reinecke
    • 1
  • P. A. Knipp
    • 2
  1. 1.Naval Research LaboratoryWashington DCUSA
  2. 2.Christopher Newport UniversityNewport NewsUSA

Personalised recommendations