Skip to main content

Self-ordered quantum dots: A new growth mode on high-index semiconductor surfaces

  • Chapter
  • First Online:
Book cover Advances in Solid State Physics 35

Part of the book series: Advances in Solid State Physics ((ASSP,volume 35))

Abstract

Well-ordered quantum-dot arrays are formed in a new self-organizing growth mode found in the metalorganic vapor-phase epitaxy (MOVPE) of lattice mismatched systems on high-index semiconductor surfaces. On GaAs (311)B substrates, strained InGaAs films spontaneously interact with AlGaAs buffer layers to form ordered arrays of disk-shaped InGaAs quantum dots buried within AlGaAs microcrystals due to lateral mass transport. The size and distance of the disks can be controlled independently in the nanometer range by the In composition and the InGaAs layer thickness, respectively, without change in the homogeneity in size and shape. The formation of buried quantum disks occurs not only on other GaAs (n11)B substrates but also in the case of InP (311)B substrates. The uniformity and the ordering of the disks are optimum on GaAs (311)B substrates which is directly reflected in the narrow photoluminescence linewidth and high efficiency. On the other hand, on GaAs (n11)A substrates one-a d zero-dimensional self-faceting by step bunching produces wire-and dot arrays on GaAs (311)A and GaAs (211)A substrates, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Sakaki, Localization and confinement of electrons in semiconductors, ed. F. Kuchar, H. Heinrich, and G. Bauer, p. 2, Springer Series in Solid-State Sciences, vol. 97, Heidelberg: Springer Verlag.

    Google Scholar 

  2. M.A. Reed, J.N. Randall, R.J. Matyi, T.M. Moore, and A.E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).

    Article  ADS  Google Scholar 

  3. M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 63, 2124 (1989).

    Article  ADS  Google Scholar 

  4. K. Kash, B.P. Van der Gaag, D.D. Mahoney, A.S. Gozdz, L.T. Florez, J.P. Harbison, and M.D. Sturge, Phys. Rev. Lett. 67, 1326 (1991).

    Article  ADS  Google Scholar 

  5. E. Kapon, D. Hwang, and R. Bhat, Phys. Rev. Lett. 63, 430 (1989).

    Article  ADS  Google Scholar 

  6. E. Colas, E. Kapon, S. Simhony, H.M. Cox, R. Bhat, K. Kash, and P.S. Lin, Appl. Phys. Lett. 55, 867 (1989).

    Article  ADS  Google Scholar 

  7. T. Fukui, H. Saito, M. Kasu, and S. Ando, J. Cryst. Growth 124, 493 (1992).

    Article  ADS  Google Scholar 

  8. M. Nishioka, S. Tsukamoto, Y. Nagamune, T. Tanaka, and Y. Arakawa, J. Cryst. Growth 124, 502 (1992).

    Article  ADS  Google Scholar 

  9. P.M. Petroff, M.S. Miller, Y.T. Lu, S.A. Chalmers, H. Metiu, H. Kroemer, and A.C. Gossard, J. Cryst. Growth 111, 360 (1991).

    Article  ADS  Google Scholar 

  10. T. Fukui, and H. Saito, Jpn. J. Appl. Phys. 29, L483, L731 (1990).

    Article  ADS  Google Scholar 

  11. M. Sato, K. Maehashi, H. Asahi, S. Hasegawa, and H. Nakashima, Superlattices and Microstructures 7, 279 (1990).

    Article  ADS  Google Scholar 

  12. R. Nötzel, N. Ledentsov, L. Däweritz, M. Hohenstein, and K. Ploog, Phys. Rev. Lett. 67, 3812 (1991).

    Article  ADS  Google Scholar 

  13. R. Nötzel, L. Däweritz, and K. Ploog, Phys. Rev. B 46, 4736 (1992).

    Article  ADS  Google Scholar 

  14. S. Guha, A. Madhukar, and K.C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).

    Article  ADS  Google Scholar 

  15. C.W. Snyder, B.G. Orr, D. Kessler, and L.M. Sander, Phys. Rev. Lett. 66, 3032 (1990).

    Article  ADS  Google Scholar 

  16. D. Leonard, M. Krishnamurthy, C.M. Reaves, D.P. DenBaars, and P.M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).

    Article  ADS  Google Scholar 

  17. J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. André, and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).

    Article  ADS  Google Scholar 

  18. J.-Y. Marzin, J.-M. Gérard, A. Izraèl, D. Barrier, and G. Bastard, Phys. Rev. Lett. 73, 716 (1994).

    Article  ADS  Google Scholar 

  19. Y. Nabetani, T. Ishikawa, S. Noda, and A. Sasaki, J. Appl. Phys. 76, 347 (1994).

    Article  ADS  Google Scholar 

  20. J. Ahopelto, H. Lipsanen, M. Sopanen, and T. Koljonen, Appl. Phys. Lett. 65, 1662 (1994).

    Article  ADS  Google Scholar 

  21. R. Nötzel, J. Temmyo, and T. Tamamura, Nature 369, 131 (1994).

    Article  ADS  Google Scholar 

  22. R. Nötzel, J. Temmyo, and T. Tamamura, Jpn. J. Appl. Phys. 33, L275 (1994).

    Article  Google Scholar 

  23. R. Nötzel, T. Fukui, H. Hasegawa, J. Temmyo, and T. Tamamura, Appl. Phys. Lett. 65, 2854 (1994).

    Article  ADS  Google Scholar 

  24. R. Nötzel, J. Temmyo, A. Kozen, T. Tamamura, T. Fukui, and H. Hasegawa, Appl. Phys. Lett. 66, 2525 (1995).

    Article  ADS  Google Scholar 

  25. R. Nötzel, J. Temmyo, H. Kamada, T. Furuta, and T. Tamamura, Appl. Phys. Lett. 65, 457 (1994).

    Article  ADS  Google Scholar 

  26. R. Nötzel, J. Temmyo, and T. Tamamura, Appl. Phys. Lett. 64, 3557 (1994).

    Article  ADS  Google Scholar 

  27. D.E. Jesson, S.J. Pennycook, J.M. Baribeau, and D.C. Houghton, Phys. Rev. Lett 71, 1744 (1993).

    Article  ADS  Google Scholar 

  28. N. Grandjean, and J. Massies, J. Cryst. Growth 134, 51 (1993).

    Article  ADS  Google Scholar 

  29. S.M. Wang, T.G. Andersson, and M.J. Ekenstedt, Appl. Phys. Lett. 59, 2156 (1991).

    Article  ADS  Google Scholar 

  30. J. Temmyo, E. Kuramochi, M. Sugo, T. Nishiya, H. Kamada, R. Nötzel, and T. Tamamura, IEEE 14th Internat. Semicond. Laser Conf. PD4, Hawaii (USA) Sept. 19–22, 1994.

    Google Scholar 

  31. B.A. Joyce, J. Cryst. Growth 99, 9 (1990).

    Article  ADS  Google Scholar 

  32. M. Hata, T. Isu, A. Watanabe, and Y. Katayama, J. Vac. Sci. Technol. B 8, 692 (1990).

    Article  Google Scholar 

  33. D.H. Reep, and S.K. Gandhi, J. Electrochem. Soc. 130, 675 (1983).

    Article  ADS  Google Scholar 

  34. R. Nötzel, N. Ledentsov, L. Däweritz, K. Ploog, and M. Hohenstein, Phys. Rev. B. 45, 3507 (1992).

    Article  ADS  Google Scholar 

  35. R. Nötzel, D. Eissler, M. Hohenstein, and K. Ploog, J. Appl. Phys. 74, 431 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Nötzel, R., Temmyo, J., Kozen, A., Tamamura, T., Fukui, T., Hasegawa, H. (1996). Self-ordered quantum dots: A new growth mode on high-index semiconductor surfaces. In: Helbig, R. (eds) Advances in Solid State Physics 35. Advances in Solid State Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107542

Download citation

  • DOI: https://doi.org/10.1007/BFb0107542

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08043-3

  • Online ISBN: 978-3-540-75334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics