Advertisement

Nonequilibrium many-body effects in semiconductor microlasers

  • S. W. Koch
  • F Jahnke
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 34)

Abstract

The improved semiconductor manufacturing capabilities make it possible to produce tiny semiconductor lasers with micrometer cavity dimensions. Ideally, these microlasers are the optical analogy of micromasers, which allow experimentalists to investigate many aspects of quantum cavity electrodynamics. In this paper we review the quantum mechanical theory of semiconductor microlasers. We analyze the coupled system of carriers and photons under laser conditions applying a microscopic theory that describes the spectral interplay of stimulated and spontaneous emission and the cavity loss. The nonequilibrium dynamics of the carrier system is modelled by a Boltzmann equation which includes carrierphoton, carrier-carrier and carrier-phonon scattering. We numerically evaluate the theory to analyze the microlaser switch-on dynamics, development of lasing out of spontaneous emission, dynamic and stationary nonequilibrium carrier distributions, carrier heating through pumping and lasing, and the effects resulting from the increased copuling efficiency of the spontaneous emission into the laser mode.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    K. Iga, F. Koyanama, and S. Kinoshita, IEEE J. Quantum Electron 242, 1845 (1988).CrossRefADSGoogle Scholar
  2. [2]
    J. Faist, F. Morier-Genoud, D. Martin, J.A. Ganiere, and F.K. Reinhart, Elect. Lett. 24, 629 (1988).CrossRefGoogle Scholar
  3. [3]
    P.L. Gourley, T.M. Brennan, B.E. Hammons, S.W. Corzine, R.S. Geels, R.H. Yam, J.W. Scott, and L.A. Coldren, Appl. Phys. Lett. 54, 1209 (1989).CrossRefADSGoogle Scholar
  4. [4]
    J.L. Jewell, S.L. McCall, Y.H. Lee, A. Scherer, A.C. Gossard, and J.H. English, Appl. Phys. Lett. 54, 1400 (1989).CrossRefADSGoogle Scholar
  5. [5]
    R.S. Geels and L.A. Coldren, Appl. Phys. Lett. 57, 1605 (1990).CrossRefADSGoogle Scholar
  6. [6]
    J.L. Jewell, J.P. Harbison, A Scherer, Y.H. Lee, and L.T. Florez, IEEE J. Quantum Electron. 27, 1332 (1991).CrossRefADSGoogle Scholar
  7. [7]
    S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, Appl. Phys. Lett. 60, 289 (1992).CrossRefADSGoogle Scholar
  8. [8]
    D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).CrossRefADSGoogle Scholar
  9. [9]
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefADSGoogle Scholar
  10. [10]
    F. De Martini, G. Innocenti, G.R. Jacobovitz and P. Mataloni, Phys. Rev. Lett. 59 2955 (1987).CrossRefADSGoogle Scholar
  11. [11]
    T.J. Rogers, D.G. Deppe, and B.G. Streetman, Appl. Phys. Lett. 57, 1858 (1990).CrossRefADSGoogle Scholar
  12. [12]
    H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S.D. Brorson, and E.P. Ippen, Appl. Phys. Lett. 57, 2814 (1990).CrossRefADSGoogle Scholar
  13. [13]
    for a textbook treatment of semiconductor laser theory see W. Chow, S.W. Koch, and M. Sargent, Semiconductor-Laser Physics, Springer Verlag, Berlin Heidelberg New York (1994).Google Scholar
  14. [14]
    F. De Martini, and G.R. jacobovitz, Phys. Rev. Lett. 60, 1711 (1988).CrossRefADSGoogle Scholar
  15. [15]
    U. Mohideen, R.E. Slusher, F. Jahnke and S.W. Koch, Semiconductor microlaser linewidth, unpublished; R.E. Slusher, U. Mohideen, F. Jahnke and S.W. Koch, Optics & Photonics News, Vol. 4 No. 12 p. 27, December 1993.Google Scholar
  16. [16]
    H. Yokoyama and D. Brorson, J. Appl. Phys. 66, 4801 (1989).CrossRefADSGoogle Scholar
  17. [17]
    Y. Yamamoto, S. Machida, and G. Björk, Phys. Rev. A44, 657 (1991).CrossRefADSGoogle Scholar
  18. [18]
    F. Jahnke, K. Henneberger, W. Schäfer and S.W. Koch, J. Opt. Soc. Am. B 10, 2394 (1993).ADSCrossRefGoogle Scholar
  19. [19]
    V. Korenman, Annals. of Physics, 39, 72 (1966).CrossRefADSGoogle Scholar
  20. [20]
    D.F. DuBois, in Lectures in Theoretical Physics, edited by W.E. Brittin and A.O. Barut, Vol. IX C, p. 469, Gordon and Breach, New York, 1967.Google Scholar
  21. [21]
    G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1991).CrossRefADSGoogle Scholar
  22. [22]
    D.G. Deppe and C. Lei, J. Apl. Phys. 70, 3443 (1991).CrossRefADSGoogle Scholar
  23. [23]
    F. De Martini, M. Marrocco, P. Mataloni, D. Murra, and R. Loudon, J. Opt. Soc. Am. B 10, 360 (1993).ADSCrossRefGoogle Scholar
  24. [24]
    D.Y. Chu and S.-T. Ho, J. Opt. Soc. Am. B 10, 381 (1993).ADSCrossRefGoogle Scholar
  25. [25]
    K. Henneberger, F. Jahnke and F. Herzel, phys. stat. sol. (b) 173, 423 (1992).CrossRefADSGoogle Scholar
  26. [26]
    For a review see e.g. K. Vahala and A. Yariv, IEEE Journ. Quantum Electron. QE-19, 1096 and 1102 (1983).CrossRefADSGoogle Scholar
  27. [27]
    F. Jahnke and S. W. Koch, Optics Letters, 18, 1438 (1993).ADSCrossRefGoogle Scholar
  28. [28]
    P.M. Boers, M.T. Vlaardingerbroek and M. Danielsen, Electron. Lett. 11, 206 (1975).CrossRefADSGoogle Scholar
  29. [29]
    F. Jahnke, S.W. Koch and K. Henneberger, Appl. Phys. Lett. 62, 2313 (1993). *** DIRECT SUPPORT *** A00AX034 00010CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • S. W. Koch
  • F Jahnke
    • 1
  1. 1.Fachbereich Physik und Wissenschaftliches Zentrum für MaterialwissenschaftenPhilipps Universität MarburgMarburgGermany

Personalised recommendations