Advertisement

Antidot superlattices: Classical chaos and quantum transport

  • R. Schuster
  • K. Ensslin
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 34)

Abstract

Antidot superlattices represent a model system to study electron transport through a periodic potential. Starting from a high-mobility two-dimensional electron gas a periodic array of potential pillars exceedings the Fermi energy in height can be fabricated by various technological means. Usually the electron mean free path is much larger than the lattice period while the Fermi wavelength is typically an order of magnitude smaller than characteristic features of the artificial superlattice. In this so-called classical ballistic transport regime pronounced maxima occur in the magnetoresistance being related to regular electron trajectories around groups of antidots. Theories based on the classical chaotic motion of the electrons in the antidot potential landscape are able to explain the experimental observations quantitatively. In a rectangular geometry the transport properties depend on the direction of the current flow with respect to the lattice orientation. If the electrons flow through the closely spaced antidots electron orbits around one, two or more antidots that are now symmetry allowed lead to maxima in the magnetoresistance. In contrast if the current flows through the wide open channels between the rows of antidots the magnetoresistance is only influenced by electron orbits whose cyclotron diameter is comparable in size to the large period of the lattice. Basic symmetry relations (e.g. Onsager’s relation) can be tested with these experiments. Since the antidot systems are so well understood in the classical limit the experiments can be used to play with various lattice symmetries. The basic results of these observations persist into the quantum mechanical regime. Finite antidot lattices are fabricated where an array of e.g. 9×9 antidots is surrounded by a square geometry. For very low temperatures, T<100 mK, electron-electron scattering is reduced and the phase coherence length of the electrons may exceed the size of the total systems. The classical commensurability oscillations are now superimposed by strong reproducible fluctuations that die out for large magnetic fields, at which the cyclotron diameter becomes smaller than the lattice period. A Fourier analysis reveals B-periodic features in the magnetic field regime where the electrons classically encircle groups of antidots. We find that the area, that can be calculated from the sequential addition of a flux quantum, corresponds to the area of the classical cyclotron orbit around a group of antidots. We argue that the electrons travel phase coherently along classical trajectories. In finite rectangular lattices this argument is supported by the fact that such B-periodic oscillations only occur in the current direction where transport is influenced by the respective classical orbit. We conclude that antidot superlattices represent a versatile system to study experimentally the crossover from classical electron trajectories to quantum mechanical wave functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Aharonov 1959]
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. [Al'tshuler 1985]
    B. L. Al'tshuler, JETP Lett. 41, 648 (1985).ADSGoogle Scholar
  3. [Al'tshuler 1986]
    B. L. Al'tshuler, V. E. Kravtsov, and I. V. Lerner, JETP Lett. 43, 441 (1986)ADSGoogle Scholar
  4. [Baskin 1992]
    E. M. Baskin, G. M. Gusev, Z. D. Kvon, A. G. Pogosov, and M. V. Entin, JETP Lett. 55, 679 (1992)ADSGoogle Scholar
  5. [Beenakker 1991]
    C. W. J. Beenakker and H. van Houten, “Quantum Transport in Semiconductor Nanostructures”, Sol. State Phys. Vol. 44, H. Ehrenreich and D. Turnbull, eds. (Academic Press, New York, 1991Google Scholar
  6. [Berthold 1992]
    G. Berthold, J. Smoliner, V. Rosskopf, E. Gornik, G. Böhm, and G. Weimann, Phys. Rev. B 45, 11350 (1992).CrossRefADSGoogle Scholar
  7. [Bloch 1928]
    F. Bloch, Z. Physik 52, 555 (1928)CrossRefADSGoogle Scholar
  8. [Block 1993]
    S. Block, M. Suhrke, S. Wilke, A. Menschig, H. Schweitzer, and D. Grützmacher, Phys. Rev. B 47, 6524 (1993)CrossRefADSGoogle Scholar
  9. [Büttiker 1986]
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)CrossRefADSGoogle Scholar
  10. [Ditlefsen 1966]
    E. Ditlefsen and J. Lothe, Philos. Mag. 14, 759 (1966)CrossRefADSGoogle Scholar
  11. [Ensslin 1990]
    K. Ensslin and P. M. Petroff, Phys. Rev. B 41, 12307 (1990).CrossRefADSGoogle Scholar
  12. [Ensslin 1992a]
    K. Ensslin, K. T. Häusler, C. Lettau, A. Lorke, J. P. Kotthaus, A. Schmeller, R. Schuster, P. M. Petroff, M. Holland, and K. Ploog, “New Concepts in Low Dimensional Physics”, p. 45, eds. G. Bauer, F. Kuchar, and H. Heinrich (Springer, Berlin, 1992)Google Scholar
  13. [Ensslin 1992b]
    K. Ensslin, S. Sasa, T. Deruelle, and P. M. Petroff, Surf. Science 263, 319 (1992)CrossRefADSGoogle Scholar
  14. [Ensslin 1994]
    K. Ensslin and R. Schuster, in “III–V Semiconductor Quantum System”, editor K. Ploog, in printGoogle Scholar
  15. [Fang 1989]
    H. Fang, R. Zeller, and P. J. Stiles, Appl. Phys. Lett. 55, 1433 (1989)CrossRefADSGoogle Scholar
  16. [Fang 1990]
    H. Fang and P. J. Stiles, Phys. Rev. B 41, 10171 (1990)CrossRefADSGoogle Scholar
  17. [Fleischmann 1992]
    R. Fleischmann, T. Geisel, and R. Ketzmerick, Phys. Rev. Lett. 68, 1367 (1992)CrossRefADSGoogle Scholar
  18. [Fleischmann 1994]
    R. Fleischmann, T. Geisel, and R. Ketzmerick, Europhysics Lett. 25, 219 (1994)CrossRefADSGoogle Scholar
  19. [Forsvoll 1964]
    K. Forsvoll and I. Holwech, Philos. Mag. 9, 435 (1964) Gerhardts 1976 R. R. Gerhardts, Surf. Sci. 58, 227 (1976)CrossRefADSGoogle Scholar
  20. [Gusev 1991]
    G. M. Gusev, Z. D. Kyon, V. M. Kudryashov, L. V. Litvin, Yu. V. Nataushev, V. T. Dolgoplov, and A. A. Shashkin, JETP Lett. 54, 364 (1991)ADSGoogle Scholar
  21. [Gusev 1992]
    G. M. Gusev, Z. D. Kvon, L. V. Litvin, Yu. V. Nataushev, A. K. Kalagin, and A. I. Toropov, JETP Lett. 55, 123 (1992)ADSGoogle Scholar
  22. [Gusev 1994]
    G. M. Gusev, P. Basmaji, D. I. Lubyshev, J. C. Portal, L. V. Litvin, Yu. V. Nastaushev, and A. I. Toropov, Workbook of the 6th International Conference on Modulated Semiconductor Structures, Garmisch, Germany, 1993, p. 949, Solid State Electronics, in printGoogle Scholar
  23. [Haake 1991]
    F. Haake, Quantum Signatures of Chaos, Springer, Berlin Heidelberg, 1991zbMATHGoogle Scholar
  24. [Heitmann 1986]
    see for example D. Heitmann, Surface Sci. 170, 332 (1986).CrossRefADSGoogle Scholar
  25. [Heller 1993]
    E. J. Heller, and S. Tomsovic, Physics Today, July 1993, p. 38Google Scholar
  26. [Hirakawa 1986]
    K. Hirakawa and H. Sakaki, Phys. Rev. B 33, 8291 (1986)CrossRefADSGoogle Scholar
  27. [Howard 1965]
    W. E. Howard and F. F. Fang, Solid State Electronics 8, 82 (1965)CrossRefADSGoogle Scholar
  28. [Ismail 1991]
    K. Ismail, M. Burkhardt, H. I. Smith, N. H. Karam, and P. A. Sekula-Moise, Appl. Phys. Lett. 58, 1539 (1991)CrossRefADSGoogle Scholar
  29. [Kronig 1931]
    R. de L. Kronig and W. G. Penney, Proc. Roy. Soc. (London) A 130, 499 (1931)zbMATHCrossRefADSGoogle Scholar
  30. [Lettau 1994]
    C. Lettau, M. Wendel, A. Schmeller, W. Hansen, J. P. Kotthaus, G. Böhm, G. Weimann, and M. Holland, Solid State Electronics, in printGoogle Scholar
  31. [Lee 1986]
    P. A. Lee, Physica A 140, 169 (1986)CrossRefADSGoogle Scholar
  32. [Lee 1990]
    K. Y. Lee, D. P. Kern, K. Ismil, R. J. Haug, T. P. Smith III, W. T. Masselink, and J. M. Hong, J. Vac. Sci. Technol. B 8, 1366 (1990)CrossRefGoogle Scholar
  33. [Lorke 1991a]
    A. Lorke, J. P. Kotthaus and K. Ploog, Superlattices and Microstructures 9, 103 (1991).CrossRefADSGoogle Scholar
  34. [Lorke 1991b]
    A. Lorke, J. P. Kotthaus, and K. Ploog, Phys. Rev. B 44, 3447 (1991)CrossRefADSGoogle Scholar
  35. [Menschig 1990]
    A. Menschig, B. Roos, R. Germann, A. Forchel, and K. Pressel, J. Vac. Sci. Technol. B 8 1353 (1990)CrossRefGoogle Scholar
  36. [Nihey 1993]
    F. Nihey and K. Nakamura, Physica (Amsterdam) 184B, 398 (1993)ADSGoogle Scholar
  37. [Onsager 1931]
    L. Onsager, Phys. Rev. 38, 2265 (1931)zbMATHCrossRefADSGoogle Scholar
  38. [Pfeiffer 1989]
    L. N. Pfeiffer, K. W. West, H. L. Störmer, and K. Baldwin, Appl. Phys. Lett. 55, 1888 (1989)CrossRefADSGoogle Scholar
  39. [Ploog 1987]
    for a review see K. Ploog, “Nato ASI Series, Vol. 170, Plenum Press, New York, 1987, eds. E. E. Mendez and K. von Klitzing, p. 43Google Scholar
  40. [Salzberger 1993]
    F. P. Salzberger, Diploma Thesis, Universität München, 1993Google Scholar
  41. [Scherrer 1987]
    A. Scherrer, M. L. Roukes, H. G. Craighead, R. M. Ruthen, E. D. Beebe, and J. P. Harbison, Appl. Phys. Lett. 51, 2133 (1987)CrossRefADSGoogle Scholar
  42. [Schuster 1992]
    R. Schuster, K. Ensslin, J. P. Kotthaus, M. Holland, and S. P. Beaumont, Superlattices and Microstructures 12, 93 (1992)CrossRefADSGoogle Scholar
  43. [Schuster 1993]
    R. Schuster, K. Ensslin, J. P. Kotthaus, M. Holland, and C. Stanley, Phys. Rev. B 47, 6843 (1993)CrossRefADSGoogle Scholar
  44. [Schuster 1994]
    R. Schuster, K. Ensslin, D. Wharam, S. Kühn, J. P. Kotthaus, G. Böhm, W. Klein, G. Tränkle, and G. Weimann, Phys. Rev. B 49, 8510 (1994)CrossRefADSGoogle Scholar
  45. [Silberbauer 1992]
    H. Silberbauer, J. Phys. C 4, 7355 (1992)Google Scholar
  46. [Silberbauer 1994a]
    H. Silberbauer and U. Rössler, preprintGoogle Scholar
  47. [Silberbauer 1994b]
    H. Silberbauer, P. Rotter, M. Suhrke, and U. Rössler, Proceedings of the Winterschool on “Interaction and Scattering Phenomena in Nanostructures”, Mauterndorf, Austria, eds. G. Bauer, H. Heinrich, and F. Kuchar, Semiconductor Science and Technology, in printGoogle Scholar
  48. [Smith 1990]
    C. G. Smith, M. Pepper, R. Newbury, H. Ahmed, D. G. Hasko, D. C. Peacock, J. E. F. Frost, D. A. Frost, D. A. Ritchie, G. A. C. Jones, and G. Hill, J. Phys. C 2, 3405 (1990)Google Scholar
  49. [Spector 1990]
    J. Spector, H. L. Störmer, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 56, 967 (1990)CrossRefADSGoogle Scholar
  50. [Sundaram 1993]
    G. M. Sundaram, N. J. Bassom, R. J. Nicholas, G. J. Rees, P. J. Heard, P. D. Prewett, J. E. F. Frost, G. A. C. Jones, D. C. Peacock, and D. A. Ritchie, Phys. Rev. B 47, 7348 (1993)CrossRefADSGoogle Scholar
  51. [Timp 1987]
    G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. E. Howard, Phys. Rev. Lett. 58, 2814 (1987)CrossRefADSGoogle Scholar
  52. [Thomton 1989]
    T. J. Thornton, M. L. Roukes, A. Scherer, and B. P. Van de Gaag, Phys. Rev. lett. 63, 2128 (1989).CrossRefADSGoogle Scholar
  53. [Tsubaki 1992]
    K. Tsubaki, T. Honda, and Y. Tokura, Surf. Science 263, 392 (1992)CrossRefADSGoogle Scholar
  54. [van Houten 1989]
    H. van Houten, C. W. J. Beenakker, J. G. Williamson, M. E. I. Brockaart, P. H. M. van Loodsrecht, B. J. van Wees, J. E. Mooji, C. T. Foxon, and J. J. Harris, Phys. Rev. B 39, 8556 (1989)CrossRefADSGoogle Scholar
  55. [van Wees 1989]
    B. J. van Wees, L. P. Kouwenhoven, C. J. P. M. Harmans, J. G. Williamson, C. E. Timmering, M. E. I. Broekhaart, C. T. Foxon, and J. J. Harris, Phys. Rev. Lett. 62, 2523 (1989)CrossRefADSGoogle Scholar
  56. [Webb 1985]
    R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985)CrossRefADSGoogle Scholar
  57. [Weiss 1991]
    D. Weiss, M. L. Roukes, A. Menschig, P. Grambow, K. v. Klitzing, and G. Weimann, Phys. Rev. Lett. 66, 2790 (1991).CrossRefADSGoogle Scholar
  58. [Weiss 1993]
    D. Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer, K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 70, 4118 (1993)CrossRefADSGoogle Scholar
  59. [Yacoby 1991]
    A. Yacoby, U. Sivan, C. P. Umbach, and J. M. Jong, Phys. Rev. Lett. 66, 1938 (1991) *** DIRECT SUPPORT *** A00AX034 00008CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • R. Schuster
    • 1
  • K. Ensslin
    • 1
  1. 1.Sektion PhysikLudwigs-Maximilians-UniversitätMünchenGermany

Personalised recommendations