The III–V nitride semiconductors for blue light emission: Recent progress and a critical evaluation of their potential in comparison to the ZnSe based II–VI semiconductors

  • S. Strite
Part of the Advances in Solid State Physics book series (ASSP, volume 34)


The GaN based III–V nitride material system holds great promise for optical device technologies in the blue and ultraviolet spectra. Past researchers were hindered by high background electron concentrations, an inability to dope GaN p-type, and lack of a suitable substrate material. In the last several years, significant progress in overcoming each of these difficulties has created widespread interest in GaN device applications. These breakthroughs are reviewed and the remaining obstacles to the fabrication of a GaN laser are identified. Based on a detailed comparison of the material properties of GaN to ZnSe, it is predicted that GaN based lasers will have significantly better performance and reliability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cree Research Inc., 2810 Meridian Parkway, Durham, NC 27713 USA.Google Scholar
  2. [2]
    M. A. Haase, J. Qiu, J. M. DePuydt, J. Cheng, Appl. Phys. Lett. 59 (1991) 1272.CrossRefADSGoogle Scholar
  3. [3]
    S. Itoh, N. Nakayama, T. Ohata, M. Ozawa, H. Okuyama, K. Nakano, A. Ishibashi, M. Ikeda, Y. Mori, Jpn. J. Appl. Phys. 32 (1993) L1530.CrossRefADSGoogle Scholar
  4. [4]
    Nichia Chemical Industries Ltd., Ogawa Building, Shiba 5-Chrome, Minato-ku, Tokyo 108 Japan.Google Scholar
  5. [5]
    Michael Ross, Shrinking Blue Bits and Lasers, IBM Research Magazine, no. 3 (1993) 10.Google Scholar
  6. [6]
    For in-depth reviews of the fundamental physical properties of the III–V nitrides see: S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10 (1992) 1237, or S. Strite, M.-E. Lin, H. Morkoç, Thin Solid Films 231 (1993) 197.CrossRefGoogle Scholar
  7. [7]
    M. Mizuta, S. Fujieda, Y. Matsumoto, T. Kawamura, Jpn. J. Appl. Phys., 25 (1986) L945.CrossRefADSGoogle Scholar
  8. [8]
    I. Petrov, E. Mojab, R. C. Powell, J. E. Greene, L. Hultman, J.-E. Sundgren, Appl. Phys. Lett. 60 (1992) 2491.CrossRefADSGoogle Scholar
  9. [9]
    S. Strite, D. Chandrasekhar, David J. Smith, J. Sariel, H. Chen, N. Teraguchi, H. Morkoç, J. Cryst. Growth 127 (1993) 204.CrossRefADSGoogle Scholar
  10. [10]
    T. Lei, K. F. Ludwig Jr., T. D. Moustakas, J. Appl. Phys. 74 (1993) 4430.CrossRefADSGoogle Scholar
  11. [11]
    S. Yoshida, S. Misawa, S. Gonda, Appl. Phys. Lett. 42 (1983) 427.CrossRefADSGoogle Scholar
  12. [12]
    I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, N. Sawaki, J. Cryst. Growth 98 (1989) 209.CrossRefADSGoogle Scholar
  13. [13]
    S. Nakamura, Jpn. J. Appl Phys. 30 (1991) L1705.CrossRefADSGoogle Scholar
  14. [14]
    J. N. Kuznia, M. A. Khan, D. T. Olsen, R. Kaplan, J. Freitas, J. Appl. Phys. 73 (1993) 4700.CrossRefADSGoogle Scholar
  15. [15]
    J. A. Powell, J. B. Petit, J. H. Edgar, I. G. Jenkins, L. G. Matus, J. W. Yang, P. Pirouz, W. J. Choyke, L. Clemen, M. Yoganathan, Appl. Phys. Lett. 59 (1991) 333.CrossRefADSGoogle Scholar
  16. [16]
    M.-E. Lin, S. Strite, A. Agarwal, A. Salvador, G. L. Zhou, N. Teraguchi, A. Rockett, H. Morkoç, Appl. Phys. Lett. 62 (1993) 702.CrossRefADSGoogle Scholar
  17. [17]
    M. J. Paisley, Z. Sitar, J. B. Posthill, R. F. Davis, J. Vac. Sci. Technol. A 7 (1989) 701.CrossRefADSGoogle Scholar
  18. [18]
    For reviews of native defects in the III–V nitrides see: S. Strite, “Defects and Impurities in III–V Semiconductors”, in Properties of the III–V Nitrides EMIS Datareview Series, J. Edgar ed., INSPEC IEE 1994, or T. L. Tansley, R. J. Egan, Phys. Rev. B 45 (1992) 10942.Google Scholar
  19. [19]
    S. Nakamura, T. Mukai, M. Senoh, Jpn. J. Appl. Phys. 31 (1992) 195.Google Scholar
  20. [20]
    S. Yoshida, S. Misawa, S. Gonda, J. Appl. Phys. 53 (1982) 6844.CrossRefADSGoogle Scholar
  21. [21]
    I. Akasaki, H. Amano, M. Kito, K. Hiramatsu, J. Luminescence 48/49 (1991) 666.CrossRefGoogle Scholar
  22. [22]
    H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, Y. Ishii, J. Luminescence 40/41 (1988) 121.CrossRefGoogle Scholar
  23. [23]
    S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, Jpn. J. Appl. Phys. 31 (1992) 191.Google Scholar
  24. [24]
    J. A. Van Vechten, J. D. Zook, R. D. Horning, B. Goldenberg, Jpn. J. Appl. Phys. 31 (1992) 3662.CrossRefADSGoogle Scholar
  25. [25]
    R. J. Molnar, T. Lei, T. D. Moustakas, Proc. Mat. Res. Soc. Symp. 281 (1993) 753.Google Scholar
  26. [26]
    M.-E. Lin, C. Xue, G. L. Zhou, J. E. Greene, H. Morkoç, Appl. Phys. Lett. 63 (1993) 932.CrossRefADSGoogle Scholar
  27. [27]
    S. Nakamura, T. Mukai, M. Seno, Jpn. J. Appl. Phys. 31 (1992) 195.Google Scholar
  28. [28]
    S. Nakamura, M. Senoh, T. Mukai, Appl. Phys. Lett. 62 (1993) 2390.CrossRefADSGoogle Scholar
  29. [29]
    S. Strite and H. Morkoç, “Thin Film Deposition and Dopant Incorporation by Energetic Particle Sources”, in Handbook of Thin Film Process Technology, D. A. Glocker and S. I. Shah, eds., Institute of Physics (Bristol 1994).Google Scholar
  30. [30]
    I. Adesida, A. Mahajan, E. Andideh, M. A. Khan, D. T. Olsen, J. N. Kuznia, Appl. Phys. Lett. 63 (1993) 2777.CrossRefADSGoogle Scholar
  31. [31]
    S. J. Pearton, C. R. Abernathy, R. Ren, J. R. Lothian, P. W. Wisk, A. Katz, J. Vac. Sci. Technol. A 11 (1993) 1772.CrossRefADSGoogle Scholar
  32. [32]
    M. E. Lin, Z. F. Fan, L. H. Allen, H. Morkoç, Appl. Phys. Lett. in press.Google Scholar
  33. [33]
    S. Kurtin, T. C. McGill, C. A. Mead, Phys. Rev. Lett. 22 (1969) 1433.CrossRefADSGoogle Scholar
  34. [34]
    J. S. Foresi, T. D. Moustakas, Appl. Phys. Lett. 62 (1993) 2859.CrossRefADSGoogle Scholar
  35. [35]
    M. A. Khan, J. N. Kuznia, A. R. Bhattarai, D. T. Olsen, Appl. Phys. Lett. 62 (1993) 1786.CrossRefADSGoogle Scholar
  36. [36]
    M.-E. Lin, Z. Ma, Z. Fan, L. Allen, H. Morkoç, Appl. Phys. Lett. 64 (1994) 1003.CrossRefADSGoogle Scholar
  37. [37]
    G. A. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, W. R. L. Lambrecht, B. Segall, H. Morkoç, Appl. Phys. Lett. in press.Google Scholar
  38. [38]
    M. Cardona and N. E. Christensen, Phys. Rev. B 35 (1987) 6182.CrossRefADSGoogle Scholar
  39. [39]
    E. A. Albanesi, W. R. L. Lambrecht, B. Segall, in Proc. 21st Conf. Phys. Chem. Semicond. Interfaces to appear in J. Vac. Sci. Technol. B.Google Scholar
  40. [40]
    S. Nakamura, T. Mukai, M. Seno, Jpn. J. Appl. Phys. 30 (1991) L1998.CrossRefADSGoogle Scholar
  41. [41]
    S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu, H. Cheng, Appl. Phys. Lett. 63 (1993) 3107.CrossRefADSGoogle Scholar
  42. [42]
    C. T. Walker, J. M. DePuydt, M. A. Haase, J. Qiu, H. Cheng, Physica B 185 (1993) 27.CrossRefADSGoogle Scholar
  43. [43]
    J. M. Gaines, R. R. Drenten, K. W. Haberern, T. Marshall, P. Mensz, J. Petruzello, Appl. Phys. Lett. 62 (1993) 2462.CrossRefADSGoogle Scholar
  44. [44]
    M.-E. Lin, B. N. Sverdlov, S. Strite, H. Morkoç, A. E. Drakin, Electron. Lett. 29 (1993) 1759. *** DIRECT SUPPORT *** A00AX034 00004CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • S. Strite
    • 1
  1. 1.IBM ForschungslaborRüschlikonSwitzerland

Personalised recommendations